Your Input: | |||||
secD | Protein-export membrane protein SecD; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (624 aa) | ||||
secF | Protein-export membrane protein SecF; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (311 aa) | ||||
gyrB | DNA gyrase, B subunit; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (649 aa) | ||||
Ppha_0025 | TIGRFAM: ribonuclease, Rne/Rng family; PFAM: RNA binding S1 domain protein; KEGG: cph:Cpha266_0040 ribonuclease, Rne/Rng family. (562 aa) | ||||
Ppha_0047 | PFAM: H+transporting two-sector ATPase delta/epsilon subunit; KEGG: pvi:Cvib_0024 H+-transporting two-sector ATPase, delta/epsilon subunit. (88 aa) | ||||
atpD | ATP synthase F1, beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (462 aa) | ||||
prfA | Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (357 aa) | ||||
gyrA | DNA gyrase, A subunit; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (827 aa) | ||||
pyrG | CTP synthase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (565 aa) | ||||
rpsF | Ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (134 aa) | ||||
rpsR | Ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (92 aa) | ||||
rplI | Ribosomal protein L9; Binds to the 23S rRNA. (151 aa) | ||||
pheS | TIGRFAM: phenylalanyl-tRNA synthetase, alpha subunit; PFAM: phenylalanyl-tRNA synthetase class IIc; KEGG: cph:Cpha266_2505 phenylalanyl-tRNA synthetase, alpha subunit; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (342 aa) | ||||
rplT | Ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (115 aa) | ||||
rpmI | PFAM: ribosomal protein L35; KEGG: cch:Cag_1713 50S ribosomal protein L35; Belongs to the bacterial ribosomal protein bL35 family. (64 aa) | ||||
Ppha_0175 | TIGRFAM: translation initiation factor IF-3; PFAM: initiation factor 3; KEGG: cch:Cag_1714 translation initiation factor IF-3; Belongs to the IF-3 family. (210 aa) | ||||
thrS | threonyl-tRNA synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged L-seryl-tRNA(Thr). (657 aa) | ||||
plsX | Fatty acid/phospholipid synthesis protein PlsX; Catalyzes the reversible formation of acyl-phosphate (acyl- PO(4)) from acyl-[acyl-carrier-protein] (acyl-ACP). This enzyme utilizes acyl-ACP as fatty acyl donor, but not acyl-CoA. (341 aa) | ||||
rpmF | TIGRFAM: ribosomal protein L32; PFAM: ribosomal L32p protein; KEGG: cph:Cpha266_2488 50S ribosomal protein L32; Belongs to the bacterial ribosomal protein bL32 family. (63 aa) | ||||
Ppha_0202 | PFAM: protein of unknown function DUF177; KEGG: cph:Cpha266_2487 protein of unknown function DUF177. (179 aa) | ||||
Ppha_0219 | TIGRFAM: preprotein translocase, YajC subunit; PFAM: YajC family protein; KEGG: plt:Plut_0157 YajC. (118 aa) | ||||
Ppha_0271 | PFAM: NUDIX hydrolase; KEGG: chu:CHU_2826 pyrophosphohydrolase related protein. (180 aa) | ||||
rpsL | Ribosomal protein S12; With S4 and S5 plays an important role in translational accuracy. (136 aa) | ||||
rpsG | Ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (155 aa) | ||||
fusA | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] (704 aa) | ||||
tuf | Translation elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (393 aa) | ||||
rpsJ | Ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (103 aa) | ||||
rplC | Ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. (209 aa) | ||||
rplD | Ribosomal protein L4/L1e; Forms part of the polypeptide exit tunnel. (212 aa) | ||||
rplW | Ribosomal protein L25/L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (103 aa) | ||||
rplB | Ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (264 aa) | ||||
rpsS | Ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (99 aa) | ||||
rplV | Ribosomal protein L22; This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity). (119 aa) | ||||
rpsC | Ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (249 aa) | ||||
rplP | Ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (139 aa) | ||||
rpmC | PFAM: ribosomal protein L29; KEGG: cph:Cpha266_2415 50S ribosomal protein L29; Belongs to the universal ribosomal protein uL29 family. (68 aa) | ||||
rpsQ | Ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (94 aa) | ||||
rplN | Ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa) | ||||
rplX | Ribosomal protein L24; One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (80 aa) | ||||
rplE | Ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (195 aa) | ||||
rpsN | Ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (89 aa) | ||||
rpsH | Ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (131 aa) | ||||
rplF | Ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (179 aa) | ||||
rplR | Ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (119 aa) | ||||
rpsE | Ribosomal protein S5; With S4 and S12 plays an important role in translational accuracy; Belongs to the universal ribosomal protein uS5 family. (172 aa) | ||||
rpmD | PFAM: ribosomal protein L30; KEGG: plt:Plut_0199 50S ribosomal protein L30. (66 aa) | ||||
rplO | Ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (184 aa) | ||||
secY | Preprotein translocase, SecY subunit; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (443 aa) | ||||
map | Methionine aminopeptidase, type I; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (265 aa) | ||||
infA | Translation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa) | ||||
rpmJ | PFAM: ribosomal protein L36; KEGG: cch:Cag_1828 50S ribosomal protein L36; Belongs to the bacterial ribosomal protein bL36 family. (38 aa) | ||||
rpsM | Ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (125 aa) | ||||
rpsK | Ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (127 aa) | ||||
rpsD | Ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (203 aa) | ||||
rpoA | DNA-directed RNA polymerase, alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (327 aa) | ||||
rplQ | PFAM: ribosomal protein L17; KEGG: cph:Cpha266_2395 50S ribosomal protein L17. (152 aa) | ||||
hisS | KEGG: cte:CT0236 histidyl-tRNA synthetase; TIGRFAM: histidyl-tRNA synthetase; PFAM: tRNA synthetase class II (G H P and S); Anticodon-binding domain protein. (429 aa) | ||||
rimP | Protein of unknown function DUF150; Required for maturation of 30S ribosomal subunits. Belongs to the RimP family. (173 aa) | ||||
nusA | NusA antitermination factor; Participates in both transcription termination and antitermination. (514 aa) | ||||
infB | Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (986 aa) | ||||
rbfA | Ribosome-binding factor A; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA. (119 aa) | ||||
truB | tRNA pseudouridine synthase B; Responsible for synthesis of pseudouridine from uracil-55 in the psi GC loop of transfer RNAs; Belongs to the pseudouridine synthase TruB family. Type 1 subfamily. (241 aa) | ||||
rpsO | Ribosomal protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. (89 aa) | ||||
Ppha_0405 | KEGG: plt:Plut_1772 hypothetical protein. (117 aa) | ||||
rpsT | Ribosomal protein S20; Binds directly to 16S ribosomal RNA. (91 aa) | ||||
rho | Transcription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (429 aa) | ||||
ychF | GTP-binding protein YchF; ATPase that binds to both the 70S ribosome and the 50S ribosomal subunit in a nucleotide-independent manner. (363 aa) | ||||
Ppha_0452 | PFAM: RNA binding S1 domain protein; KEGG: cch:Cag_0570 30S ribosomal protein S1. (592 aa) | ||||
gltX | glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (502 aa) | ||||
Ppha_0626 | NusG antitermination factor; PFAM: KOW domain protein; NGN domain protein; KEGG: cch:Cag_0149 NusG antitermination factor. (196 aa) | ||||
Ppha_0657 | PFAM: protein of unknown function DUF28; KEGG: cch:Cag_0165 hypothetical protein. (250 aa) | ||||
leuS | TIGRFAM: leucyl-tRNA synthetase; KEGG: cch:Cag_1688 leucyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (807 aa) | ||||
pnp | Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. (728 aa) | ||||
Ppha_0689 | KEGG: cph:Cpha266_0565 hypothetical protein. (106 aa) | ||||
rpmB | PFAM: ribosomal protein L28; KEGG: cph:Cpha266_0582 50S ribosomal protein L28; Belongs to the bacterial ribosomal protein bL28 family. (72 aa) | ||||
Ppha_0764 | PFAM: ABC transporter related; SMART: AAA ATPase; KEGG: cph:Cpha266_0618 ABC transporter related. (652 aa) | ||||
smpB | SsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (157 aa) | ||||
deaD | DEAD/DEAH box helicase domain protein; DEAD-box RNA helicase involved in various cellular processes at low temperature, including ribosome biogenesis, mRNA degradation and translation initiation. (599 aa) | ||||
rpmA | PFAM: ribosomal protein L27; KEGG: cch:Cag_0863 50S ribosomal protein L27; Belongs to the bacterial ribosomal protein bL27 family. (84 aa) | ||||
Ppha_1031 | Ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (96 aa) | ||||
Ppha_1045 | PFAM: Class I peptide chain release factor; KEGG: cch:Cag_1326 hypothetical protein. (137 aa) | ||||
Ppha_1058 | PFAM: regulatory protein MerR; KEGG: cph:Cpha266_1889 transcriptional regulator, MerR family. (133 aa) | ||||
proS | prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). (481 aa) | ||||
prmC | protein-(glutamine-N5) methyltransferase, release factor-specific; Methylates the class 1 translation termination release factors RF1/PrfA and RF2/PrfB on the glutamine residue of the universally conserved GGQ motif; Belongs to the protein N5-glutamine methyltransferase family. PrmC subfamily. (299 aa) | ||||
pth | Aminoacyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (190 aa) | ||||
metG | methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (700 aa) | ||||
nnrD | Carbohydrate kinase, YjeF related protein; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. Catalyzes the epimerization of the S- and R-forms of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. This is a prerequisite for the S-specific NAD(P)H-hydrate dehydratase to allow t [...] (528 aa) | ||||
secA | Preprotein translocase, SecA subunit; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane; Belongs to the SecA family. (1024 aa) | ||||
rplS | Ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (120 aa) | ||||
trmD | tRNA (guanine-N1)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (248 aa) | ||||
rimM | 16S rRNA processing protein RimM; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (173 aa) | ||||
rpsP | PFAM: ribosomal protein S16; KEGG: cph:Cpha266_1524 30S ribosomal protein S16; Belongs to the bacterial ribosomal protein bS16 family. (136 aa) | ||||
ffh | Signal recognition particle protein; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Belongs to the GTP-binding SRP family. SRP54 subfamily. (449 aa) | ||||
ppa | Inorganic diphosphatase; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions. (177 aa) | ||||
prfC | Peptide chain release factor 3; Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. PrfC subfamily. (529 aa) | ||||
aspS | aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (601 aa) | ||||
rplY | Ribosomal 5S rRNA E-loop binding protein Ctc/L25/TL5; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (199 aa) | ||||
rpmG | PFAM: ribosomal protein L33; KEGG: cph:Cpha266_1725 50S ribosomal protein L33; Belongs to the bacterial ribosomal protein bL33 family. (60 aa) | ||||
trmH | tRNA guanosine-2'-O-methyltransferase; Catalyzes the 2'-O methylation of guanosine at position 18 in tRNA; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family. (212 aa) | ||||
lysS | TIGRFAM: lysyl-tRNA synthetase; PFAM: tRNA synthetase class II (D K and N); nucleic acid binding OB-fold tRNA/helicase-type; KEGG: cch:Cag_1176 lysyl-tRNA synthetase; Belongs to the class-II aminoacyl-tRNA synthetase family. (511 aa) | ||||
greA | Transcription elongation factor GreA; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides. (159 aa) | ||||
Ppha_1785 | KEGG: cph:Cpha266_1858 signal peptidase I; TIGRFAM: signal peptidase I; PFAM: peptidase S24 and S26 domain protein; Belongs to the peptidase S26 family. (276 aa) | ||||
lepA | GTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (605 aa) | ||||
rnr | Ribonuclease R; 3'-5' exoribonuclease that releases 5'-nucleoside monophosphates and is involved in maturation of structured RNAs. (770 aa) | ||||
Ppha_2085 | Preprotein translocase, SecG subunit; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family. (120 aa) | ||||
pheT | KEGG: cph:Cpha266_0925 phenylalanyl-tRNA synthetase beta subunit; TIGRFAM: phenylalanyl-tRNA synthetase, beta subunit; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (803 aa) | ||||
Ppha_2108 | PFAM: helicase domain protein; DEAD/DEAH box helicase domain protein; SMART: DEAD-like helicases; KEGG: cph:Cpha266_1251 DEAD/DEAH box helicase domain protein; Belongs to the DEAD box helicase family. (418 aa) | ||||
mfd | Transcription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. (1103 aa) | ||||
Ppha_2286 | KEGG: plt:Plut_0424 transcriptional regulators, TraR/DksA family. (144 aa) | ||||
ileS | isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 2 subfamily. (1085 aa) | ||||
pyrH | Uridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (236 aa) | ||||
tsf | Translation elongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (288 aa) | ||||
rpsB | PFAM: ribosomal protein S2; KEGG: cph:Cpha266_2010 30S ribosomal protein S2; Belongs to the universal ribosomal protein uS2 family. (255 aa) | ||||
rpsI | PFAM: ribosomal protein S9; KEGG: cph:Cpha266_2011 30S ribosomal protein S9; Belongs to the universal ribosomal protein uS9 family. (129 aa) | ||||
rplM | Ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (149 aa) | ||||
Ppha_2380 | RNA polymerase, sigma 32 subunit, RpoH; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. (299 aa) | ||||
valS | valyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (903 aa) | ||||
rpmE | Ribosomal protein L31; Binds the 23S rRNA; Belongs to the bacterial ribosomal protein bL31 family. Type A subfamily. (75 aa) | ||||
frr | Ribosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (186 aa) | ||||
rpsU | PFAM: ribosomal protein S21; KEGG: pvi:Cvib_0348 30S ribosomal protein S21; Belongs to the bacterial ribosomal protein bS21 family. (65 aa) | ||||
tig | Trigger factor domain; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (426 aa) | ||||
ftsY | Signal recognition particle-docking protein FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). (317 aa) | ||||
alaS | alanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (888 aa) | ||||
efp | Translation elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (188 aa) | ||||
rpoC | DNA-directed RNA polymerase, beta' subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1497 aa) | ||||
rpoB | DNA-directed RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1303 aa) | ||||
rplL | Ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (124 aa) | ||||
rplJ | Ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (172 aa) | ||||
rplA | Ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (229 aa) | ||||
rplK | Ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (141 aa) | ||||
nusG | NusG antitermination factor; Participates in transcription elongation, termination and antitermination. (191 aa) | ||||
secE | Preprotein translocase, SecE subunit; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation. (63 aa) | ||||
Ppha_2690 | TIGRFAM: small GTP-binding protein; PFAM: elongation factor G domain protein; protein synthesis factor GTP-binding; elongation factor Tu domain 2 protein; elongation factor G domain IV; KEGG: cph:Cpha266_0222 elongation factor G. (691 aa) | ||||
atpG | ATP synthase F1, gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (291 aa) | ||||
atpA | ATP synthase F1, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (526 aa) | ||||
prfB | Peptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (363 aa) | ||||
Ppha_2876 | PFAM: deoxyhypusine synthase; KEGG: cph:Cpha266_2699 deoxyhypusine synthase-like protein; Belongs to the deoxyhypusine synthase family. (349 aa) | ||||
Ppha_2877 | KEGG: cph:Cpha266_2700 tryptophanyl-tRNA synthetase; TIGRFAM: tryptophanyl-tRNA synthetase; PFAM: aminoacyl-tRNA synthetase class Ib. (348 aa) | ||||
argS | KEGG: pvi:Cvib_1732 arginyl-tRNA synthetase; TIGRFAM: arginyl-tRNA synthetase. (552 aa) | ||||
atpH | ATP synthase F1, delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (178 aa) | ||||
atpF | ATP synthase F0, B subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (175 aa) | ||||
atpE | ATP synthase F0, C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (73 aa) | ||||
atpB | ATP synthase F0, A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (340 aa) | ||||
yidC | 60 kDa inner membrane insertion protein; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins. (583 aa) | ||||
rpmH | PFAM: ribosomal protein L34; KEGG: cph:Cpha266_2743 50S ribosomal protein L34; Belongs to the bacterial ribosomal protein bL34 family. (53 aa) |