STRINGSTRING
KGE51894.1 KGE51894.1 tatA tatA tatB tatB tatC tatC secY secY KGE51247.1 KGE51247.1 KGE51244.1 KGE51244.1 KGE51242.1 KGE51242.1 KGE51239.1 KGE51239.1 secD secD secF secF KGE51818.1 KGE51818.1 secE secE secA secA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
KGE51894.1Preprotein translocase subunit SecG; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family. (157 aa)
tatAPreprotein translocase subunit SecA; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. TatA could form the protein-conducting channel of the Tat system. (75 aa)
tatBPreprotein translocase; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. Together with TatC, TatB is part of a receptor directly interacting with Tat signal peptides. TatB may form an oligomeric binding site that transiently accommodates folded Tat precursor proteins before their translocation. (204 aa)
tatCPreprotein translocase subunit TatC; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. Together with TatB, TatC is part of a receptor directly interacting with Tat signal peptides. (251 aa)
secYPreprotein translocase subunit SecY; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (454 aa)
KGE51247.1General secretion pathway protein GspE; Involved in a type II secretion system (T2SS, formerly general secretion pathway, GSP) for the export of proteins. (575 aa)
KGE51244.1General secretion pathway protein GspH; Derived by automated computational analysis using gene prediction method: Protein Homology. (169 aa)
KGE51242.1General secretion pathway protein GspJ; Derived by automated computational analysis using gene prediction method: Protein Homology. (211 aa)
KGE51239.1General secretion pathway protein GspM; Derived by automated computational analysis using gene prediction method: Protein Homology. (217 aa)
secDPreprotein translocase subunit SecD; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (614 aa)
secFPreprotein translocase subunit SecF; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (322 aa)
KGE51818.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (198 aa)
secEPreprotein translocase subunit SecE; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation; Belongs to the SecE/SEC61-gamma family. (135 aa)
secAPreprotein translocase subunit SecA; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving both as a receptor for the preprotein-SecB complex and as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane. Belongs to the SecA family. (912 aa)
Your Current Organism:
Xanthomonas axonopodis
NCBI taxonomy Id: 325777
Other names: X. axonopodis pv. vasculorum, Xanthomonas axonopodis pv. vasculorum
Server load: low (18%) [HD]