STRINGSTRING
psaK psaK psaL psaL psaJ psaJ psaF psaF psaK-2 psaK-2 psaC psaC psaA psaA psaB psaB psaE psaE psaD psaD psaM psaM
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
psaKPhotosystem I protein PsaK. (86 aa)
psaLPhotosystem I protein PsaL. (153 aa)
psaJPhotosystem I protein PsaJ; May help in the organization of the PsaE and PsaF subunits. Belongs to the PsaJ family. (51 aa)
psaFPhotosystem I protein PsaF. (167 aa)
psaK-2Photosystem I protein PsaK. (86 aa)
psaCPhotosystem I ferredoxin protein PsaC; Apoprotein for the two 4Fe-4S centers FA and FB of photosystem I (PSI); essential for photochemical activity. FB is the terminal electron acceptor of PSI, donating electrons to ferredoxin. The C-terminus interacts with PsaA/B/D and helps assemble the protein into the PSI complex. Required for binding of PsaD and PsaE to PSI. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized ac [...] (81 aa)
psaAPhotosystem I core protein PsaA; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6. (753 aa)
psaBPhotosystem I core protein PsaB; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6; Belongs to the PsaA/PsaB family. (736 aa)
psaEPhotosystem I protein PsaE; Stabilizes the interaction between PsaC and the PSI core, assists the docking of the ferredoxin to PSI and interacts with ferredoxin-NADP oxidoreductase; Belongs to the PsaE family. (89 aa)
psaDPhotosystem I protein PsaD. (139 aa)
psaMPhotosystem I PsaM subunit. (31 aa)
Your Current Organism:
Acaryochloris marina
NCBI taxonomy Id: 329726
Other names: A. marina MBIC11017, Acaryochloris marina MBIC11017
Server load: low (20%) [HD]