STRINGSTRING
guaB guaB purC purC purF purF purB purB glyA glyA purL purL CUQ81864.1 CUQ81864.1 purH purH CUQ84924.1 CUQ84924.1 fhs fhs folD folD purA purA purD purD purN purN purM purM purE purE guaA_1 guaA_1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
guaBInosine-5'-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (484 aa)
purCPhosphoribosylaminoimidazole-succinocarboxamide synthase; Belongs to the SAICAR synthetase family. (291 aa)
purFAmidophosphoribosyltransferase precursor; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine. (478 aa)
purBAdenylosuccinate lyase; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (477 aa)
glyAPyridoxal-phosphate-dependent serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (411 aa)
purLPhosphoribosylformylglycinamidine synthase. (1251 aa)
CUQ81864.1IMP cyclohydrolase. (237 aa)
purHBifunctional purine biosynthesis protein PurH. (392 aa)
CUQ84924.1Uncharacterised protein. (456 aa)
fhsFormate--tetrahydrofolate ligase; Belongs to the formate--tetrahydrofolate ligase family. (556 aa)
folDBifunctional protein FolD; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (279 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (426 aa)
purDPhosphoribosylamine--glycine ligase; Belongs to the GARS family. (423 aa)
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (208 aa)
purMPhosphoribosylformylglycinamidine cyclo-ligase. (341 aa)
purEN5-carboxyaminoimidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (170 aa)
guaA_1GMP synthase [glutamine-hydrolyzing]. (515 aa)
Your Current Organism:
Ruminococcus torques
NCBI taxonomy Id: 33039
Other names: ATCC 27756, [. torques, [Ruminococcus] torques
Server load: low (24%) [HD]