STRINGSTRING
NuoJ NuoJ OAG83108.1 OAG83108.1 OAG87997.1 OAG87997.1 OAG90923.1 OAG90923.1 RatA RatA OAG83429.1 OAG83429.1 OAG92782.1 OAG92782.1 nuoA nuoA nuoB nuoB nuoC nuoC NuoE NuoE NuoF NuoF NuoG NuoG nuoH nuoH nuoI nuoI nuoK nuoK NuoL NuoL NuoM NuoM nuoN nuoN OAG92935.1 OAG92935.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
NuoJNADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (169 aa)
OAG83108.1Pyrroloquinoline quinone biosynthesis protein PqqD; With PqqC converts a biosynthetic intermediate to pyrroloquinoline quinone; Derived by automated computational analysis using gene prediction method: Protein Homology. (90 aa)
OAG87997.1Ferredoxin; Derived by automated computational analysis using gene prediction method: Protein Homology. (102 aa)
OAG90923.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (483 aa)
RatARibosome association toxin RatA; Derived by automated computational analysis using gene prediction method: Protein Homology. (144 aa)
OAG83429.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (180 aa)
OAG92782.1NAD(FAD)-dependent dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (103 aa)
nuoANADH-quinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (137 aa)
nuoBNADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (224 aa)
nuoCNADH:ubiquinone oxidoreductase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family. (593 aa)
NuoENADH dehydrogenase; Catalyzes the transfer of electrons from NADH to quinone; Derived by automated computational analysis using gene prediction method: Protein Homology. (165 aa)
NuoFNADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (452 aa)
NuoGNADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (905 aa)
nuoHNADH:ubiquinone oxidoreductase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (335 aa)
nuoINADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (182 aa)
nuoKNADH-quinone oxidoreductase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (102 aa)
NuoLNADH-quinone oxidoreductase subunit L; Derived by automated computational analysis using gene prediction method: Protein Homology. (617 aa)
NuoMNADH:ubiquinone oxidoreductase subunit M; Derived by automated computational analysis using gene prediction method: Protein Homology. (510 aa)
nuoNNADH:ubiquinone oxidoreductase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (489 aa)
OAG92935.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (201 aa)
Your Current Organism:
Pseudomonas viridiflava
NCBI taxonomy Id: 33069
Other names: ATCC 13223, CECT 458, CFBP 2107, CIP 106699, DSM 11124, DSM 6694, ICMP 2848, LMG 2352, LMG:2352, NCPPB 635, NRRL B-895, P. viridiflava, Phytomonas viridiflava, Pseudomonas sp. 286, Pseudomonas syringae group genomosp. 6
Server load: low (28%) [HD]