STRINGSTRING
ilvA ilvA rpiA rpiA argJ argJ metK metK OBX76771.1 OBX76771.1 aroC aroC serC serC hisZ hisZ OBX76748.1 OBX76748.1 prs prs hisA hisA OBX76578.1 OBX76578.1 OBX76612.1 OBX76612.1 dapB dapB OBX76497.1 OBX76497.1 OBX76507.1 OBX76507.1 OBX76327.1 OBX76327.1 OBX76402.1 OBX76402.1 aroK aroK aroB aroB OBX76408.1 OBX76408.1 OBX76263.1 OBX76263.1 OBX76083.1 OBX76083.1 OBX75882.1 OBX75882.1 dapD dapD leuA leuA argB argB proB proB OBX80550.1 OBX80550.1 pgk pgk OBX80891.1 OBX80891.1 tpiA tpiA trpF trpF trpB trpB trpA trpA OBX80788.1 OBX80788.1 OBX80786.1 OBX80786.1 OBX81069.1 OBX81069.1 hisG hisG OBX81064.1 OBX81064.1 hisD hisD hisC hisC OBX73001.1 OBX73001.1 OBX72973.1 OBX72973.1 ilvC ilvC leuC leuC leuD leuD leuB leuB gpmI gpmI dapE dapE OBX73119.1 OBX73119.1 tyrB tyrB aroQ aroQ OBX73123.1 OBX73123.1 rsmA rsmA argG argG proC proC thrB thrB hisF hisF OBX78286.1 OBX78286.1 dapA dapA argH argH hisB hisB OBX79045.1 OBX79045.1 OBX79033.1 OBX79033.1 ilvD ilvD hisH hisH icd icd glyA glyA OBX79900.1 OBX79900.1 trpD trpD trpC trpC OBX73669.1 OBX73669.1 OBX73689.1 OBX73689.1 OBX73750.1 OBX73750.1 OBX73785.1 OBX73785.1 aroE aroE OBX79513.1 OBX79513.1 argA argA metXS metXS hisI hisI proA proA lysA lysA eno eno OBX80496.1 OBX80496.1 aroA aroA hisC-2 hisC-2 OBX80484.1 OBX80484.1 OBX80482.1 OBX80482.1 argD argD argC argC ilvE ilvE OBX80686.1 OBX80686.1 OBX80628.1 OBX80628.1 OBX80623.1 OBX80623.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ilvAPLP-dependent threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. (518 aa)
rpiARibose 5-phosphate isomerase A; Catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate. (220 aa)
argJBifunctional ornithine acetyltransferase/N-acetylglutamate synthase; Catalyzes two activities which are involved in the cyclic version of arginine biosynthesis: the synthesis of N-acetylglutamate from glutamate and acetyl-CoA as the acetyl donor, and of ornithine by transacetylation between N(2)-acetylornithine and glutamate. Belongs to the ArgJ family. (405 aa)
metKMethionine adenosyltransferase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. (388 aa)
OBX76771.1Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transketolase family. (665 aa)
aroCChorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. (373 aa)
serCPhosphoserine transaminase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (369 aa)
hisZHypothetical protein; Required for the first step of histidine biosynthesis. May allow the feedback regulation of ATP phosphoribosyltransferase activity by histidine. (427 aa)
OBX76748.1Citrate (Si)-synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. (430 aa)
prsRibose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (320 aa)
hisA1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)methylideneamino]imidazole-4- carboxamide isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (244 aa)
OBX76578.1Threonine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (471 aa)
OBX76612.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (370 aa)
dapB4-hydroxy-tetrahydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate; Belongs to the DapB family. (268 aa)
OBX76497.1Septum formation protein Maf; Nucleoside triphosphate pyrophosphatase that hydrolyzes dTTP and UTP. May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids. (218 aa)
OBX76507.1Homoserine dehydrogenase; Catalyzes the formation of L-aspartate 4-semialdehyde from L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (451 aa)
OBX76327.1D-3-phosphoglycerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (409 aa)
OBX76402.1Aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (548 aa)
aroKShikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (190 aa)
aroB3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ). (369 aa)
OBX76408.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (211 aa)
OBX76263.1Twitching motility protein PilT; Derived by automated computational analysis using gene prediction method: Protein Homology. (144 aa)
OBX76083.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (201 aa)
OBX75882.1Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway; Belongs to the transaldolase family. Type 1 subfamily. (310 aa)
dapD2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transferase hexapeptide repeat family. (277 aa)
leuA2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 2 subfamily. (570 aa)
argBAcetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl-L- glutamate; Belongs to the acetylglutamate kinase family. ArgB subfamily. (297 aa)
proBGlutamate 5-kinase; Catalyzes the transfer of a phosphate group to glutamate to form L-glutamate 5-phosphate. (372 aa)
OBX80550.1Fructose-1,6-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis. (345 aa)
pgkPhosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (399 aa)
OBX80891.1Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. (1231 aa)
tpiATriose-phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (259 aa)
trpFN-(5'-phosphoribosyl)anthranilate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpF family. (231 aa)
trpBTryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (414 aa)
trpATryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. (280 aa)
OBX80788.1Aspartate-semialdehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate-semialdehyde dehydrogenase family. (377 aa)
OBX80786.1Ribulose-phosphate 3-epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family. (241 aa)
OBX81069.1Cysteine synthase B; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family. (314 aa)
hisGATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. Belongs to the ATP phosphoribosyltransferase family. Short subfamily. (215 aa)
OBX81064.1Pyruvate dehydrogenase; Catalyzes the formation of acetate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. (575 aa)
hisDHistidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (433 aa)
hisCHistidinol-phosphate transaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (372 aa)
OBX73001.1Acetolactate synthase, large subunit, biosynthetic type; Derived by automated computational analysis using gene prediction method: Protein Homology. (607 aa)
OBX72973.1Acetolactate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (163 aa)
ilvCKetol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (340 aa)
leuC3-isopropylmalate dehydratase large subunit; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. (472 aa)
leuD3-isopropylmalate dehydratase small subunit; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. (220 aa)
leuB3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. (356 aa)
gpmIPhosphoglycerate mutase (2,3-diphosphoglycerate-independent); Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate. (537 aa)
dapESuccinyl-diaminopimelate desuccinylase; Catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelic acid (SDAP), forming succinate and LL-2,6-diaminoheptanedioate (DAP), an intermediate involved in the bacterial biosynthesis of lysine and meso-diaminopimelic acid, an essential component of bacterial cell walls; Belongs to the peptidase M20A family. DapE subfamily. (408 aa)
OBX73119.1Erythrose-4-phosphate dehydrogenase; NAD-dependent; catalyzes the formation of 4-phosphoerythronate from erythrose 4-phosphate in the biosynthesis of pyridoxine 5'-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (369 aa)
tyrBCatalyzes the formation of L-glutamate and an aromatic oxo acid from an aromatic amino acid and 2-oxoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (401 aa)
aroQType II 3-dehydroquinate dehydratase; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family. (166 aa)
OBX73123.1Anthranilate synthase component 2; Catalyzes the formation of anthranilate from chorismate and glutamine; functions in tryptophan biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (191 aa)
rsmA16S rRNA (adenine(1518)-N(6)/adenine(1519)-N(6))- dimethyltransferase; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits. (294 aa)
argGArgininosuccinate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the argininosuccinate synthase family. Type 1 subfamily. (411 aa)
proCPyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (300 aa)
thrBHomoserine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pseudomonas-type ThrB family. (326 aa)
hisFImidazole glycerol phosphate synthase subunit HisF; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit. (252 aa)
OBX78286.1Succinyldiaminopimelate transaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (396 aa)
dapA4-hydroxy-tetrahydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). (308 aa)
argHArgininosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (458 aa)
hisBImidazoleglycerol-phosphate dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (200 aa)
OBX79045.1Type I glutamate--ammonia ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (469 aa)
OBX79033.1Ornithine carbamoyltransferase; Reversibly catalyzes the transfer of the carbamoyl group from carbamoyl phosphate (CP) to the N(epsilon) atom of ornithine (ORN) to produce L-citrulline. (306 aa)
ilvDDihydroxy-acid dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family. (632 aa)
hisHImidazole glycerol phosphate synthase, glutamine amidotransferase subunit; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF. (205 aa)
icdNADP-dependent isocitrate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (419 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (422 aa)
OBX79900.1Anthranilate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (473 aa)
trpDAnthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (378 aa)
trpCIndole-3-glycerol-phosphate synthase; Involved in tryptophan biosynthesis; amino acid biosynthesis; converts 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate to C(1)-(3-indolyl)-glycerol 3-phosphate and carbon dioxide and water; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpC family. (269 aa)
OBX73669.1Glyceraldehyde-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (475 aa)
OBX73689.1Serine O-acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (341 aa)
OBX73750.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (452 aa)
OBX73785.13-deoxy-7-phosphoheptulonate synthase; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (357 aa)
aroEShikimate dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). (287 aa)
OBX79513.1Phosphoserine phosphatase SerB; Derived by automated computational analysis using gene prediction method: Protein Homology. (351 aa)
argAAmino-acid N-acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the acetyltransferase family. ArgA subfamily. (446 aa)
metXSHomoserine O-acetyltransferase; Transfers a succinyl group from succinyl-CoA to L-homoserine, forming succinyl-L-homoserine. (395 aa)
hisIBifunctional phosphoribosyl-AMP cyclohydrolase/phosphoribosyl-ATP pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; In the N-terminal section; belongs to the PRA-CH family. (277 aa)
proAGlutamate-5-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent reduction of L-glutamate 5- phosphate into L-glutamate 5-semialdehyde and phosphate. The product spontaneously undergoes cyclization to form 1-pyrroline-5-carboxylate. Belongs to the gamma-glutamyl phosphate reductase family. (442 aa)
lysADiaminopimelate epimerase; Specifically catalyzes the decarboxylation of meso- diaminopimelate (meso-DAP) to L-lysine. (404 aa)
enoPhosphopyruvate hydratase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. (441 aa)
OBX80496.1L-serine ammonia-lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (491 aa)
aroABifunctional prephenate dehydrogenase/3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. (751 aa)
hisC-2Histidinol-phosphate transaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (383 aa)
OBX80484.1Chorismate mutase; Derived by automated computational analysis using gene prediction method: Protein Homology. (379 aa)
OBX80482.1Aspartate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartokinase family. (427 aa)
argDAcetylornithine aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (398 aa)
argCN-acetyl-gamma-glutamyl-phosphate reductase; Catalyzes the NADPH-dependent reduction of N-acetyl-5- glutamyl phosphate to yield N-acetyl-L-glutamate 5-semialdehyde. Belongs to the NAGSA dehydrogenase family. Type 1 subfamily. (356 aa)
ilvEBranched-chain amino acid aminotransferase; Acts on leucine, isoleucine and valine. Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family. (308 aa)
OBX80686.1Bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aconitase/IPM isomerase family. (874 aa)
OBX80628.15-methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase; Catalyzes the formation of tetrahydropteroyl-L-glutamate and methionine from L-homocysteine and 5-methyltetrahydropteroyltri-L-glutamate; Derived by automated computational analysis using gene prediction method: Protein Homology. (353 aa)
OBX80623.1Cysteine synthase A; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family. (350 aa)
Your Current Organism:
Moraxella atlantae
NCBI taxonomy Id: 34059
Other names: ATCC 29525, CCUG 6415, CIP 82.25, DSM 6999, IFO 14588, LMG 5133, LMG:5133, M. atlantae, Moraxella atlantensis, NBRC 14588, NCTC 11091, strain 5118
Server load: low (26%) [HD]