STRINGSTRING
rplI rplI rpsR rpsR rpsF rpsF ppa ppa rbfA rbfA tig tig rpsO rpsO rpsP rpsP rimM rimM rpmE2 rpmE2 yidC yidC pyrG pyrG tsf tsf rplQ rplQ rpoA rpoA rpsD rpsD rpsK rpsK rpsM rpsM rpmJ rpmJ infA infA secY secY rplO rplO rpmD rpmD rpsE rpsE rplR rplR rplF rplF rpsH rpsH rpsN2 rpsN2 rplE rplE rplX rplX rplN rplN rpsQ rpsQ rpmC rpmC rplP rplP rpsC rpsC rplV rplV rplB rplB rplW rplW rplD rplD rplC rplC rpmF rpmF rpmH rpmH smpB smpB lepA lepA rpmA rpmA rplU rplU rpmB rpmB rpmG2 rpmG2 ftsY ftsY ctc ctc rimP rimP nusA nusA infB infB AB406_1224 AB406_1224 secA secA rpsL rpsL rpsG rpsG fusA fusA rpsJ rpsJ AB406_1325 AB406_1325 rpsB rpsB rpsI rpsI rplM rplM rpsU rpsU tuf tuf AB406_1408 AB406_1408 nusG nusG rplK rplK rplA rplA rplJ rplJ rplL rplL rpoB rpoB rpoC rpoC atpD atpD AB406_1621 AB406_1621 ndk ndk atpB atpB atpE atpE atpF atpF atpH atpH atpA atpA atpG atpG trmD trmD secF secF rpsA rpsA ffh ffh lysS lysS rplT rplT rpmI rpmI infC infC rplS rplS AB406_2004 AB406_2004 pyrH pyrH frr frr prfB prfB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rplI50S ribosomal protein L9; Binds to the 23S rRNA. (165 aa)
rpsR30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (100 aa)
rpsF30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (113 aa)
ppaInorganic pyrophosphatase. (203 aa)
rbfARibosome-binding factor A; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA. (119 aa)
tigTrigger factor. (444 aa)
rpsO30S ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome. (89 aa)
rpsP30S ribosomal protein S16; Belongs to the bacterial ribosomal protein bS16 family. (177 aa)
rimMRibosome maturation factor RimM; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (174 aa)
rpmE250S ribosomal protein L31 type B. (84 aa)
yidCMembrane protein insertase YidC; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins. (596 aa)
pyrGCTP synthase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (538 aa)
tsfElongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (322 aa)
rplQ50S ribosomal protein L17. (164 aa)
rpoADNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (331 aa)
rpsD30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (202 aa)
rpsK30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (129 aa)
rpsM30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (125 aa)
rpmJ50S ribosomal protein L36; Belongs to the bacterial ribosomal protein bL36 family. (38 aa)
infATranslation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (71 aa)
secYProtein translocase subunit SecY; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (459 aa)
rplO50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (149 aa)
rpmD50S ribosomal protein L30. (58 aa)
rpsE30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (173 aa)
rplR50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (117 aa)
rplF50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (181 aa)
rpsH30S ribosomal protein S8; Belongs to the universal ribosomal protein uS8 family. (110 aa)
rpsN2Alternate 30S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (89 aa)
rplE50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (183 aa)
rplX50S ribosomal protein L24; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. (106 aa)
rplN50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa)
rpsQ30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (57 aa)
rpmCHypothetical protein; Belongs to the universal ribosomal protein uL29 family. (61 aa)
rplP50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (141 aa)
rpsC30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (231 aa)
rplV50S ribosomal protein L22; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (134 aa)
rplB50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (273 aa)
rplW50S ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (96 aa)
rplD50S ribosomal protein L4; Forms part of the polypeptide exit tunnel. (209 aa)
rplC50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. (207 aa)
rpmF50S ribosomal protein l32p; Belongs to the bacterial ribosomal protein bL32 family. (67 aa)
rpmH50S ribosomal protein l34p; Belongs to the bacterial ribosomal protein bL34 family. (51 aa)
smpBSsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (155 aa)
lepAElongation factor 4; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (598 aa)
rpmA50S ribosomal protein L27; Belongs to the bacterial ribosomal protein bL27 family. (85 aa)
rplU50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (208 aa)
rpmB50S ribosomal protein L28. (66 aa)
rpmG250S ribosomal protein L33 2; Belongs to the bacterial ribosomal protein bL33 family. (60 aa)
ftsYSignal recognition particle receptor FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). (318 aa)
ctcGeneral stress protein CTC; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (202 aa)
rimPHypothetical protein; Required for maturation of 30S ribosomal subunits. Belongs to the RimP family. (155 aa)
nusATranscription termination/antitermination protein NusA; Participates in both transcription termination and antitermination. (410 aa)
infBTranslation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (944 aa)
AB406_1224RNA polymerase rpb6; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (107 aa)
secAProtein translocase subunit seca; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane. (1023 aa)
rpsL30S ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit. (127 aa)
rpsG30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (158 aa)
fusAElongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. (705 aa)
rpsJ30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (101 aa)
AB406_1325Preprotein translocase subunit YajC. (90 aa)
rpsB30S ribosomal protein S2; Belongs to the universal ribosomal protein uS2 family. (264 aa)
rpsI30S ribosomal protein S9; Belongs to the universal ribosomal protein uS9 family. (128 aa)
rplM50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (151 aa)
rpsUHypothetical protein; Belongs to the bacterial ribosomal protein bS21 family. (65 aa)
tufElongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (368 aa)
AB406_1408Preprotein translocase subunit SecE. (68 aa)
nusGTranscription termination/antitermination protein NusG; Participates in transcription elongation, termination and antitermination. (180 aa)
rplK50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (135 aa)
rplA50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (230 aa)
rplJ50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (167 aa)
rplL50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (122 aa)
rpoBDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1224 aa)
rpoCDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1422 aa)
atpDATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (510 aa)
AB406_1621F0F1-type ATP synthase subunit epsilon. (93 aa)
ndkNucleoside diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (139 aa)
atpBATP synthase subunit a; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (338 aa)
atpEHypothetical protein; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (69 aa)
atpFATP synthase subunit b; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (164 aa)
atpHATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (179 aa)
atpAATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (525 aa)
atpGATP synthase gamma chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (289 aa)
trmDtRNA (guanine-N(1)-)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (226 aa)
secFPreprotein translocase subunit SecD; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA; Belongs to the SecD/SecF family. SecD subfamily. (957 aa)
rpsA30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. (603 aa)
ffhSignal recognition particle protein; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Belongs to the GTP-binding SRP family. SRP54 subfamily. (454 aa)
lysSLysine--tRNA ligase; Belongs to the class-II aminoacyl-tRNA synthetase family. (568 aa)
rplT50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (97 aa)
rpmI50S ribosomal protein L35; Belongs to the bacterial ribosomal protein bL35 family. (65 aa)
infCTranslation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (165 aa)
rplS50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (118 aa)
AB406_2004Hypothetical protein; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family. (104 aa)
pyrHUridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (253 aa)
frrRibosome-recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (184 aa)
prfBPeptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (376 aa)
Your Current Organism:
Riemerella anatipestifer
NCBI taxonomy Id: 34085
Other names: ATCC 11845, CCUG 14215, CCUG 21370, CIP 82.28, DSM 15868, JCM 9532, LMG 11054, LMG 11606, LMG:11054, LMG:11606, MCCM 00568, Moraxella anatipestifer, NCTC 11014, Pasteurella anapestifer, Pasteurella anatipestifer, Pfeifferella anatipestifer, R. anatipestifer
Server load: low (24%) [HD]