STRINGSTRING
mdh mdh astE astE lpxL lpxL putA putA dapA dapA dapE dapE AOM39721.1 AOM39721.1 AOM39880.1 AOM39880.1 lpxM lpxM fumC fumC astB astB astD astD AOM39420.1 AOM39420.1 argD argD AOM39393.1 AOM39393.1 aroC aroC hutH hutH hutU hutU hutI hutI AOM40313.1 AOM40313.1 AOM40466.1 AOM40466.1 aroA aroA maeA maeA AOM40803.1 AOM40803.1 AOM40896.1 AOM40896.1 AOM40913.1 AOM40913.1 tyrA tyrA AOM40915.1 AOM40915.1 aroK aroK lysA lysA AOM41039.1 AOM41039.1 AOM41222.1 AOM41222.1 dapB dapB aspA_2 aspA_2 AOM41527.1 AOM41527.1 dapF dapF aroE aroE ppc ppc AOM41699.1 AOM41699.1 asd asd aroB aroB aroK-2 aroK-2 argD-2 argD-2 frdD frdD aroQ aroQ AOM42169.1 AOM42169.1 AOM42170.1 AOM42170.1 folB folB dapD dapD AOM42365.1 AOM42365.1 AOM42963.1 AOM42963.1 AOM42539.1 AOM42539.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
mdhMalate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. (312 aa)
astESuccinylglutamate desuccinylase; Transforms N(2)-succinylglutamate into succinate and glutamate; Belongs to the AspA/AstE family. Succinylglutamate desuccinylase subfamily. (328 aa)
lpxLLipid A biosynthesis lauroyl acyltransferase; Catalyzes the transfer of laurate from lauroyl-acyl carrier protein (ACP) to Kdo(2)-lipid IV(A) to form Kdo(2)-(lauroyl)-lipid IV(A). (313 aa)
putADelta-1-pyrroline-5-carboxylate dehydrogenase; Oxidizes proline to glutamate for use as a carbon and nitrogen source; Belongs to the aldehyde dehydrogenase family. In the N-terminal section; belongs to the proline dehydrogenase family. (1326 aa)
dapA4-hydroxy-tetrahydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). (299 aa)
dapESuccinyl-diaminopimelate desuccinylase; Catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelic acid (SDAP), forming succinate and LL-2,6-diaminoheptanedioate (DAP), an intermediate involved in the bacterial biosynthesis of lysine and meso-diaminopimelic acid, an essential component of bacterial cell walls; Belongs to the peptidase M20A family. DapE subfamily. (375 aa)
AOM39721.1Malic enzyme; NADP-dependent; catalyzes the oxidative decarboxylation of malate to form pyruvate; decarboxylates oxaloacetate; Derived by automated computational analysis using gene prediction method: Protein Homology. (759 aa)
AOM39880.1Dihydroneopterin triphosphate diphosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (144 aa)
lpxMLipid A biosynthesis (KDO)2-(lauroyl)-lipid IVA acyltransferase; Catalyzes the transfer of myristate from myristoyl-acyl carrier protein (ACP) to Kdo(2)-(lauroyl)-lipid IV(A) to form Kdo(2)- lipid A. (322 aa)
fumCFumarate hydratase, class II; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. (464 aa)
astBSuccinylarginine dihydrolase; Catalyzes the hydrolysis of N(2)-succinylarginine into N(2)- succinylornithine, ammonia and CO(2). (447 aa)
astDSuccinylglutamate-semialdehyde dehydrogenase; Catalyzes the NAD-dependent reduction of succinylglutamate semialdehyde into succinylglutamate. (492 aa)
AOM39420.1Arginine N-succinyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (343 aa)
argDAcetylornithine aminotransferase; Involved in both the arginine and lysine biosynthetic pathways; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (408 aa)
AOM39393.1Bifunctional tetrahydrofolate synthase/dihydrofolate synthase; Functions in two distinct reactions of the de novo folate biosynthetic pathway. Catalyzes the addition of a glutamate residue to dihydropteroate (7,8-dihydropteroate or H2Pte) to form dihydrofolate (7,8-dihydrofolate monoglutamate or H2Pte-Glu). Also catalyzes successive additions of L-glutamate to tetrahydrofolate or 10- formyltetrahydrofolate or 5,10-methylenetetrahydrofolate, leading to folylpolyglutamate derivatives. (437 aa)
aroCChorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. (361 aa)
hutHHistidine ammonia-lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (510 aa)
hutUUrocanate hydratase; Catalyzes the conversion of urocanate to 4-imidazolone-5- propionate. (557 aa)
hutIImidazolonepropionase; Derived by automated computational analysis using gene prediction method: Protein Homology. (422 aa)
AOM40313.13-deoxy-7-phosphoheptulonate synthase; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (348 aa)
AOM40466.1Aminodeoxychorismate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (275 aa)
aroA3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. (428 aa)
maeAMalic enzyme; oxaloacetate-decarboxylating; NAD-dependent; catalyzes the formation of pyruvate form malate; Derived by automated computational analysis using gene prediction method: Protein Homology. (565 aa)
AOM40803.13-deoxy-7-phosphoheptulonate synthase; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (350 aa)
AOM40896.1Chorismate mutase; Catalyzes the Claisen rearrangement of chorismate to prephenate. (180 aa)
AOM40913.1Chorismate mutase; Derived by automated computational analysis using gene prediction method: Protein Homology. (384 aa)
tyrABifunctional chorismate mutase/prephenate dehydrogenase; Catalyzes the formation of prephenate from chorismate and the formation of 4-hydroxyphenylpyruvate from prephenate in tyrosine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (373 aa)
AOM40915.13-deoxy-7-phosphoheptulonate synthase; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (364 aa)
aroKShikimate kinase II; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (176 aa)
lysADiaminopimelate decarboxylase; Specifically catalyzes the decarboxylation of meso- diaminopimelate (meso-DAP) to L-lysine. (421 aa)
AOM41039.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (88 aa)
AOM41222.1Bifunctional aspartate kinase/homoserine dehydrogenase I; Derived by automated computational analysis using gene prediction method: Protein Homology; In the C-terminal section; belongs to the homoserine dehydrogenase family. (819 aa)
dapB4-hydroxy-tetrahydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate; Belongs to the DapB family. (273 aa)
aspA_2Aspartate ammonia-lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (474 aa)
AOM41527.1Dihydropteroate synthase; Catalyzes the condensation of para-aminobenzoate (pABA) with 6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8- dihydropteroate (H2Pte), the immediate precursor of folate derivatives. (289 aa)
dapFDiaminopimelate epimerase; Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso-diaminoheptanedioate (meso-DAP), a precursor of L- lysine and an essential component of the bacterial peptidoglycan. (274 aa)
aroEShikimate dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). (272 aa)
ppcPhosphoenolpyruvate carboxylase; Forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle; Belongs to the PEPCase type 1 family. (878 aa)
AOM41699.1Bifunctional aspartate kinase/homoserine dehydrogenase II; Derived by automated computational analysis using gene prediction method: Protein Homology; In the C-terminal section; belongs to the homoserine dehydrogenase family. (811 aa)
asdAspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (368 aa)
aroB3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ). (365 aa)
aroK-2Shikimate kinase I; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (173 aa)
argD-2Bifunctional succinylornithine transaminase/acetylornithine transaminase; Involved in both the arginine and lysine biosynthetic pathways; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (422 aa)
frdDFumarate reductase; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (117 aa)
aroQType II 3-dehydroquinate dehydratase; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family. (150 aa)
AOM42169.1Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (472 aa)
AOM42170.1Glutamate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (1485 aa)
folBDihydroneopterin aldolase; Catalyzes the conversion of 7,8-dihydroneopterin to 6- hydroxymethyl-7,8-dihydropterin. (117 aa)
dapD2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transferase hexapeptide repeat family. (274 aa)
AOM42365.1Lysine-sensitive aspartokinase 3; Catalyzes the formation of 4-phospho-L-aspartate from L-aspartate and ATP; functions in amino acid biosynthesis; lysine sensitive; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartokinase family. (457 aa)
AOM42963.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (212 aa)
AOM42539.12-amino-4-hydroxy-6- hydroxymethyldihydropteridine diphosphokinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (160 aa)
Your Current Organism:
Xenorhabdus hominickii
NCBI taxonomy Id: 351679
Other names: CIP 109072, DSM 17903, X. hominickii, Xenorhabdus hominickii Taillez et al. 2006, Xenorhabdus sp. KE01, Xenorhabdus sp. KR01, Xenorhabdus sp. KR05, strain KE01
Server load: low (14%) [HD]