Your Input: | |||||
AOM41394.1 | Adenine/guanine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (379 aa) | ||||
epd | Erythrose-4-phosphate dehydrogenase; Catalyzes the NAD-dependent conversion of D-erythrose 4- phosphate to 4-phosphoerythronate. (339 aa) | ||||
folD | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (291 aa) | ||||
lpxH | UDP-2,3-diacylglucosamine diphosphatase; Hydrolyzes the pyrophosphate bond of UDP-2,3- diacylglucosamine to yield 2,3-diacylglucosamine 1-phosphate (lipid X) and UMP by catalyzing the attack of water at the alpha-P atom. Involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell. (240 aa) | ||||
purE | 5-(carboxyamino)imidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (156 aa) | ||||
purK | 5-(carboxyamino)imidazole ribonucleotide synthase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (355 aa) | ||||
pyrG | CTP synthase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (545 aa) | ||||
AOM42553.1 | GTP diphosphokinase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (745 aa) | ||||
AOM42532.1 | Hypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (183 aa) | ||||
ispF | 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; Involved in the biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), two major building blocks of isoprenoid compounds. Catalyzes the conversion of 4-diphosphocytidyl-2- C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP). (157 aa) | ||||
ispD | 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; Catalyzes the formation of 4-diphosphocytidyl-2-C-methyl-D- erythritol from CTP and 2-C-methyl-D-erythritol 4-phosphate (MEP). Belongs to the IspD/TarI cytidylyltransferase family. IspD subfamily. (265 aa) | ||||
AOM42464.1 | Uridine phosphorylase; Catalyzes the reversible phosphorylytic cleavage of uridine and deoxyuridine to uracil and ribose- or deoxyribose-1-phosphate. The produced molecules are then utilized as carbon and energy sources or in the rescue of pyrimidine bases for nucleotide synthesis. Belongs to the PNP/UDP phosphorylase family. (251 aa) | ||||
AOM42380.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (100 aa) | ||||
AOM42370.1 | Diacylglycerol kinase; Recycling of diacylglycerol produced during the turnover of membrane phospholipid. (123 aa) | ||||
plsB | Glycerol-3-phosphate 1-O-acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPAT/DAPAT family. (824 aa) | ||||
accA | acetyl-CoA carboxylase carboxyltransferase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (319 aa) | ||||
lpxB | lipid-A-disaccharide synthase; Condensation of UDP-2,3-diacylglucosamine and 2,3- diacylglucosamine-1-phosphate to form lipid A disaccharide, a precursor of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell. (394 aa) | ||||
lpxA | acyl-[acyl-carrier-protein]--UDP-N- acetylglucosamine O-acyltransferase; Involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell. (265 aa) | ||||
fabZ | 3-hydroxyacyl-[acyl-carrier-protein] dehydratase FabZ; Involved in unsaturated fatty acids biosynthesis. Catalyzes the dehydration of short chain beta-hydroxyacyl-ACPs and long chain saturated and unsaturated beta-hydroxyacyl-ACPs. (150 aa) | ||||
lpxD | UDP-3-O-(3-hydroxymyristoyl)glucosamine N-acyltransferase; Catalyzes the N-acylation of UDP-3-O- (hydroxytetradecanoyl)glucosamine using 3-hydroxytetradecanoyl-ACP as the acyl donor. Is involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell. (342 aa) | ||||
AOM42335.1 | CDP-diglyceride synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CDS family. (287 aa) | ||||
dxr | 1-deoxy-D-xylulose-5-phosphate reductoisomerase; Catalyzes the NADP-dependent rearrangement and reduction of 1-deoxy-D-xylulose-5-phosphate (DXP) to 2-C-methyl-D-erythritol 4- phosphate (MEP). (398 aa) | ||||
pyrH | UMP kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (242 aa) | ||||
thyA | Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (264 aa) | ||||
pdxA | 4-hydroxythreonine-4-phosphate dehydrogenase PdxA; Catalyzes the NAD(P)-dependent oxidation of 4-(phosphooxy)-L- threonine (HTP) into 2-amino-3-oxo-4-(phosphooxy)butyric acid which spontaneously decarboxylates to form 3-amino-2-oxopropyl phosphate (AHAP). (333 aa) | ||||
AOM42272.1 | Catalyzes the formation of 1,2-diacyl-sn-glycerol 3-phosphate from 1-acyl-sn-glycerol 3-phosphate using either acyl-CoA or acyl-ACP; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 1-acyl-sn-glycerol-3-phosphate acyltransferase family. (242 aa) | ||||
plsY | Glycerol-3-phosphate acyltransferase; Catalyzes the transfer of an acyl group from acyl-phosphate (acyl-PO(4)) to glycerol-3-phosphate (G3P) to form lysophosphatidic acid (LPA). This enzyme utilizes acyl-phosphate as fatty acyl donor, but not acyl-CoA or acyl-ACP. (218 aa) | ||||
AOM42205.1 | Acyl-phosphate glycerol 3-phosphate acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (263 aa) | ||||
AOM42202.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (460 aa) | ||||
AOM42123.1 | acetyl-CoA carboxylase biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (449 aa) | ||||
purH | Bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (534 aa) | ||||
purD | Phosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (427 aa) | ||||
AOM42071.1 | HAD family hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (223 aa) | ||||
thiC | Phosphomethylpyrimidine synthase ThiC; Catalyzes the synthesis of the hydroxymethylpyrimidine phosphate (HMP-P) moiety of thiamine from aminoimidazole ribotide (AIR) in a radical S-adenosyl-L-methionine (SAM)-dependent reaction. (650 aa) | ||||
thiE | Thiamine-phosphate diphosphorylase; Condenses 4-methyl-5-(beta-hydroxyethyl)thiazole monophosphate (THZ-P) and 2-methyl-4-amino-5-hydroxymethyl pyrimidine pyrophosphate (HMP-PP) to form thiamine monophosphate (TMP). Belongs to the thiamine-phosphate synthase family. (236 aa) | ||||
AOM42067.1 | Molybdopterin-synthase adenylyltransferase MoeB; Derived by automated computational analysis using gene prediction method: Protein Homology. (274 aa) | ||||
AOM42066.1 | Sulfur carrier protein ThiS; Derived by automated computational analysis using gene prediction method: Protein Homology. (66 aa) | ||||
thiG | Thiazole synthase; Catalyzes the rearrangement of 1-deoxy-D-xylulose 5-phosphate (DXP) to produce the thiazole phosphate moiety of thiamine. Sulfur is provided by the thiocarboxylate moiety of the carrier protein ThiS. In vitro, sulfur can be provided by H(2)S. (255 aa) | ||||
mobA | Molybdenum cofactor guanylyltransferase MobA; Transfers a GMP moiety from GTP to Mo-molybdopterin (Mo-MPT) cofactor (Moco or molybdenum cofactor) to form Mo-molybdopterin guanine dinucleotide (Mo-MGD) cofactor; Belongs to the MobA family. (192 aa) | ||||
AOM42014.1 | Molybdopterin-guanine dinucleotide biosynthesis protein B; Derived by automated computational analysis using gene prediction method: Protein Homology. (177 aa) | ||||
gmk | Guanylate kinase; Essential for recycling GMP and indirectly, cGMP. (207 aa) | ||||
AOM41945.1 | (p)ppGpp synthetase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (704 aa) | ||||
acs | acetate--CoA ligase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. Acs undergoes a two-step reaction. In the first half reaction, Acs combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. Enables the cell to use acetate during aerobic growth to generate energy via the TCA cycle, and biosynthetic compounds via the glyoxylate shunt. Acetylates [...] (651 aa) | ||||
atpB | F0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (274 aa) | ||||
atpE | ATP F0F1 synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (81 aa) | ||||
atpF-2 | F0F1 ATP synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (156 aa) | ||||
atpH | ATP synthase F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (177 aa) | ||||
atpA | F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (513 aa) | ||||
atpG | F0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (287 aa) | ||||
atpD | F0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (460 aa) | ||||
atpC | F0F1 ATP synthase subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. (140 aa) | ||||
glmU | UDP-N-acetylglucosamine diphosphorylase/glucosamine-1-phosphate N-acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. (461 aa) | ||||
fdhD | Sufurtransferase FdhD; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Belongs to the FdhD family. (276 aa) | ||||
pyrE | Orotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (213 aa) | ||||
dut | Deoxyuridine 5'-triphosphate nucleotidohydrolase; This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA; Belongs to the dUTPase family. (152 aa) | ||||
AOM41762.1 | Bifunctional phosphopantothenoylcysteine decarboxylase/phosphopantothenate synthase; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family. (419 aa) | ||||
coaD | Pantetheine-phosphate adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (160 aa) | ||||
gpsA | Glycerol-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NAD-dependent glycerol-3-phosphate dehydrogenase family. (339 aa) | ||||
AOM41726.1 | Capsular biosynthesis protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (238 aa) | ||||
AOM41720.1 | Acyl-phosphate glycerol 3-phosphate acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (213 aa) | ||||
AOM41719.1 | Phosphatidate cytidylyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (314 aa) | ||||
coaA | Type I pantothenate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (316 aa) | ||||
gppA | Guanosine-5'-triphosphate,3'-diphosphate pyrophosphatase; Catalyzes the conversion of pppGpp to ppGpp. Guanosine pentaphosphate (pppGpp) is a cytoplasmic signaling molecule which together with ppGpp controls the 'stringent response', an adaptive process that allows bacteria to respond to amino acid starvation, resulting in the coordinated regulation of numerous cellular activities. (502 aa) | ||||
AOM42902.1 | Adenylate cyclase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the adenylyl cyclase class-1 family. (840 aa) | ||||
psd | Phosphatidylserine decarboxylase; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer). (306 aa) | ||||
purA | Adenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (432 aa) | ||||
cysQ | 3'(2'),5'-bisphosphate nucleotidase CysQ; Converts adenosine-3',5'-bisphosphate (PAP) to AMP. Belongs to the inositol monophosphatase superfamily. CysQ family. (247 aa) | ||||
AOM42896.1 | Anaerobic ribonucleotide reductase-activating protein; Activation of anaerobic ribonucleoside-triphosphate reductase under anaerobic conditions by generation of an organic free radical, using S-adenosylmethionine and reduced flavodoxin as cosubstrates to produce 5'-deoxy-adenosine. (154 aa) | ||||
pyrI | Aspartate carbamoyltransferase regulatory subunit; Involved in allosteric regulation of aspartate carbamoyltransferase. (154 aa) | ||||
pyrB | Aspartate carbamoyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (313 aa) | ||||
AOM41340.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (1200 aa) | ||||
deoB | Phosphopentomutase; Phosphotransfer between the C1 and C5 carbon atoms of pentose; Belongs to the phosphopentomutase family. (407 aa) | ||||
carB | Carbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarB family. (1073 aa) | ||||
carA | Carbamoyl phosphate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarA family. (386 aa) | ||||
ispH_1 | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase; Catalyzes the conversion of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate (HMBPP) into a mixture of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Acts in the terminal step of the DOXP/MEP pathway for isoprenoid precursor biosynthesis. (317 aa) | ||||
AOM41250.1 | Riboflavin biosynthesis protein RibF; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribF family. (314 aa) | ||||
AOM41240.1 | Flavoprotein; Derived by automated computational analysis using gene prediction method: Protein Homology. (191 aa) | ||||
AOM41228.1 | Molybdopterin adenylyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (191 aa) | ||||
AOM41212.1 | Trifunctional adenylyltransferase/ribosylnicotinamide kinase/transcriptional regulator; Catalyzes the formation of NAD(+) from nicotinamide ribonucleotide; catalyzes the formation of nicotinamide mononucleotide from nicotinamide riboside; also has a regulatory function; Derived by automated computational analysis using gene prediction method: Protein Homology. (408 aa) | ||||
thiL | Thiamine-phosphate kinase; Catalyzes the ATP-dependent phosphorylation of thiamine- monophosphate (TMP) to form thiamine-pyrophosphate (TPP), the active form of vitamin B1; Belongs to the thiamine-monophosphate kinase family. (348 aa) | ||||
A9255_11640 | Pyroglutamyl-peptidase I; Lipid phosphatase which dephosphorylates phosphatidylglycerophosphate (PGP) to phosphatidylglycerol (PG). (163 aa) | ||||
dxs | 1-deoxy-D-xylulose-5-phosphate synthase; Catalyzes the acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield 1-deoxy-D- xylulose-5-phosphate (DXP); Belongs to the transketolase family. DXPS subfamily. (621 aa) | ||||
thiI | tRNA 4-thiouridine(8) synthase ThiI; Catalyzes the ATP-dependent transfer of a sulfur to tRNA to produce 4-thiouridine in position 8 of tRNAs, which functions as a near-UV photosensor. Also catalyzes the transfer of sulfur to the sulfur carrier protein ThiS, forming ThiS-thiocarboxylate. This is a step in the synthesis of thiazole, in the thiamine biosynthesis pathway. The sulfur is donated as persulfide by IscS. (482 aa) | ||||
apt | Adenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (183 aa) | ||||
adk | Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (215 aa) | ||||
lpxC | UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase; Catalyzes the hydrolysis of UDP-3-O-myristoyl-N- acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate, the committed step in lipid A biosynthesis; Belongs to the LpxC family. (305 aa) | ||||
coaE | dephospho-CoA kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family. (207 aa) | ||||
AOM41041.1 | Hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (201 aa) | ||||
AOM40967.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the UPF0301 (AlgH) family. (187 aa) | ||||
gmhA | Phosphoheptose isomerase; Catalyzes the isomerization of sedoheptulose 7-phosphate in D-glycero-D-manno-heptose 7-phosphate. (193 aa) | ||||
gpt | Xanthine phosphoribosyltransferase; Acts on guanine, xanthine and to a lesser extent hypoxanthine; Belongs to the purine/pyrimidine phosphoribosyltransferase family. XGPT subfamily. (151 aa) | ||||
aas | Bifunctional 2-acylglycerophosphoethanolamine acyltransferase/acyl-ACP synthetase; Plays a role in lysophospholipid acylation. Transfers fatty acids to the 1-position via an enzyme-bound acyl-ACP intermediate in the presence of ATP and magnesium. Its physiological function is to regenerate phosphatidylethanolamine from 2-acyl-glycero-3- phosphoethanolamine (2-acyl-GPE) formed by transacylation reactions or degradation by phospholipase A1; In the C-terminal section; belongs to the ATP-dependent AMP-binding enzyme family. (715 aa) | ||||
AOM40928.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CinA family. (167 aa) | ||||
pssA | Catalyzes de novo synthesis of phosphatidylserine from CDP-diacylglycerol and L-serine which leads eventually to the production of phosphatidylethanolamine; bounds to the ribosome; Derived by automated computational analysis using gene prediction method: Protein Homology. (452 aa) | ||||
nadD | Nicotinic acid mononucleotide adenylyltransferase; Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD). (215 aa) | ||||
AOM40870.1 | Magnesium/cobalt efflux protein; Involved in the transport of magnesium and cobalt ions; Derived by automated computational analysis using gene prediction method: Protein Homology. (292 aa) | ||||
moaA | Cyclic pyranopterin phosphate synthase; Catalyzes the cyclization of GTP to (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate. (326 aa) | ||||
moaC | Molybdenum cofactor biosynthesis protein C; Catalyzes the conversion of (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate to cyclic pyranopterin monophosphate (cPMP); Belongs to the MoaC family. (159 aa) | ||||
AOM40776.1 | Molybdopterin synthase sulfur carrier subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (81 aa) | ||||
moaE | Molybdenum cofactor biosynthesis protein MoaE; Catalyzes the conversion of molybdopterin precursor Z into molybdopterin; Derived by automated computational analysis using gene prediction method: Protein Homology. (150 aa) | ||||
AOM40747.1 | Molybdopterin-synthase adenylyltransferase MoeB; Derived by automated computational analysis using gene prediction method: Protein Homology. (250 aa) | ||||
AOM40746.1 | Molybdopterin molybdotransferase; Catalyzes the insertion of molybdate into adenylated molybdopterin with the concomitant release of AMP. Belongs to the MoeA family. (413 aa) | ||||
folE | GTP cyclohydrolase I FolE; Derived by automated computational analysis using gene prediction method: Protein Homology. (221 aa) | ||||
udk | Uridine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (213 aa) | ||||
dcd | dCTP deaminase; Catalyzes the deamination of dCTP to dUTP. (193 aa) | ||||
AOM40715.1 | Glutaredoxin; Functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase; also involved in reducing some disulfides in a coupled system with glutathione reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (87 aa) | ||||
cmk | Cytidylate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (228 aa) | ||||
lpxK | Tetraacyldisaccharide 4'-kinase; Transfers the gamma-phosphate of ATP to the 4'-position of a tetraacyldisaccharide 1-phosphate intermediate (termed DS-1-P) to form tetraacyldisaccharide 1,4'-bis-phosphate (lipid IVA). (330 aa) | ||||
coaE_1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (196 aa) | ||||
pncB | Nicotinate phosphoribosyltransferase; Catalyzes the synthesis of beta-nicotinate D-ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate at the expense of ATP; Belongs to the NAPRTase family. (404 aa) | ||||
pyrD | Dihydroorotate dehydrogenase (quinone); Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (336 aa) | ||||
AOM40598.1 | Ribonucleotide-diphosphate reductase subunit beta; B2 or R2 protein; type 1a enzyme; catalyzes the rate-limiting step in dNTP synthesis; converts nucleotides to deoxynucleotides; forms a homodimer and then a multimeric complex with NrdA; Derived by automated computational analysis using gene prediction method: Protein Homology. (376 aa) | ||||
lpxT | Hypothetical protein; Involved in the modification of the lipid A domain of lipopolysaccharides (LPS). Transfers a phosphate group from undecaprenyl pyrophosphate (C55-PP) to lipid A to form lipid A 1- diphosphate. Contributes to the recycling of undecaprenyl phosphate (C55-P); Belongs to the LpxT phosphotransferase family. (234 aa) | ||||
plsX | Phosphate acyltransferase; Catalyzes the reversible formation of acyl-phosphate (acyl- PO(4)) from acyl-[acyl-carrier-protein] (acyl-ACP). This enzyme utilizes acyl-ACP as fatty acyl donor, but not acyl-CoA. (339 aa) | ||||
tmk | dTMP kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (211 aa) | ||||
thiK | Thiamine kinase; Catalyzes the phosphorylation of thiamine to thiamine phosphate. (286 aa) | ||||
AOM40445.1 | Adenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (456 aa) | ||||
arnB | UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase; Catalyzes the conversion of UDP-4-keto-arabinose (UDP-Ara4O) to UDP-4-amino-4-deoxy-L-arabinose (UDP-L-Ara4N). The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides; Belongs to the DegT/DnrJ/EryC1 family. ArnB subfamily. (381 aa) | ||||
arnC | Undecaprenyl-phosphate 4-deoxy-4-formamido-L-arabinose transferase; Catalyzes the transfer of 4-deoxy-4-formamido-L-arabinose from UDP to undecaprenyl phosphate. The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides. (325 aa) | ||||
arnA | Bifunctional UDP-glucuronic acid oxidase/UDP-4-amino-4-deoxy-L-arabinose formyltransferase; Bifunctional enzyme that catalyzes the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcUA) to UDP-4-keto- arabinose (UDP-Ara4O) and the addition of a formyl group to UDP-4- amino-4-deoxy-L-arabinose (UDP-L-Ara4N) to form UDP-L-4-formamido- arabinose (UDP-L-Ara4FN). The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides; In the N-terminal section; belongs to the Fmt family. UDP- L-Ara4N formyltransferase subfamily. (660 aa) | ||||
arnD | 4-deoxy-4-formamido-L-arabinose- phosphoundecaprenol deformylase; Catalyzes the deformylation of 4-deoxy-4-formamido-L- arabinose-phosphoundecaprenol to 4-amino-4-deoxy-L-arabinose- phosphoundecaprenol. The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides; Belongs to the polysaccharide deacetylase family. ArnD deformylase subfamily. (297 aa) | ||||
arnT | 4-amino-4-deoxy-L-arabinose lipid A transferase; Catalyzes the transfer of the L-Ara4N moiety of the glycolipid undecaprenyl phosphate-alpha-L-Ara4N to lipid A. The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides. Belongs to the glycosyltransferase 83 family. (553 aa) | ||||
arnE | 4-amino-4-deoxy-L-arabinose-phospho-UDP flippase; Translocates 4-amino-4-deoxy-L-arabinose-phosphoundecaprenol (alpha-L-Ara4N-phosphoundecaprenol) from the cytoplasmic to the periplasmic side of the inner membrane; Belongs to the ArnE family. (115 aa) | ||||
arnF | 4-amino-4-deoxy-L-arabinose-phospho-UDP flippase; Translocates 4-amino-4-deoxy-L-arabinose-phosphoundecaprenol (alpha-L-Ara4N-phosphoundecaprenol) from the cytoplasmic to the periplasmic side of the inner membrane; Belongs to the ArnF family. (128 aa) | ||||
purR | Transcriptional repressor PurR; Is the main repressor of the genes involved in the de novo synthesis of purine nucleotides, regulating purB, purC, purEK, purF, purHD, purL, purMN and guaBA expression. PurR is allosterically activated to bind its cognate DNA by binding the purine corepressors, hypoxanthine or guanine, thereby effecting transcription repression. (341 aa) | ||||
pdxH | Pyridoxamine 5'-phosphate oxidase; Catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP) into pyridoxal 5'-phosphate (PLP). (217 aa) | ||||
AOM40226.1 | Nicotinamidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (211 aa) | ||||
purU | Formyltetrahydrofolate deformylase; Catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to formate and tetrahydrofolate (FH4). (282 aa) | ||||
tdk | Thymidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (198 aa) | ||||
clsA | Cardiolipin synthase; Catalyzes the reversible phosphatidyl group transfer from one phosphatidylglycerol molecule to another to form cardiolipin (CL) (diphosphatidylglycerol) and glycerol. (486 aa) | ||||
pyrF | Orotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (248 aa) | ||||
add | Adenosine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the metallo-dependent hydrolases superfamily. Adenosine and AMP deaminases family. Adenosine deaminase subfamily. (333 aa) | ||||
A9255_04710 | Helicase; Frameshifted; incomplete; partial on complete genome; missing stop; Derived by automated computational analysis using gene prediction method: Protein Homology. (167 aa) | ||||
lpxM | Lipid A biosynthesis (KDO)2-(lauroyl)-lipid IVA acyltransferase; Catalyzes the transfer of myristate from myristoyl-acyl carrier protein (ACP) to Kdo(2)-(lauroyl)-lipid IV(A) to form Kdo(2)- lipid A. (322 aa) | ||||
AOM39866.1 | Glyoxalase; Derived by automated computational analysis using gene prediction method: Protein Homology. (131 aa) | ||||
A9255_04235 | Hypothetical protein; Internal stop; Derived by automated computational analysis using gene prediction method: Protein Homology. (204 aa) | ||||
ispE | 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase; Catalyzes the phosphorylation of the position 2 hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol; Belongs to the GHMP kinase family. IspE subfamily. (301 aa) | ||||
prs | Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (336 aa) | ||||
AOM39815.1 | Universal stress protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (145 aa) | ||||
A9255_04025 | Transposase; Frameshifted; Derived by automated computational analysis using gene prediction method: Protein Homology. (142 aa) | ||||
AOM39762.1 | AIR synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (337 aa) | ||||
guaA | Glutamine-hydrolyzing GMP synthase; Catalyzes the synthesis of GMP from XMP. (525 aa) | ||||
guaB | IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (488 aa) | ||||
purC | Phosphoribosylaminoimidazolesuccinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family. (237 aa) | ||||
upp | Uracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (208 aa) | ||||
purM | Phosphoribosylformylglycinamidine cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (347 aa) | ||||
purN | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (212 aa) | ||||
AOM39616.1 | Bifunctional hydroxymethylpyrimidine kinase/phosphomethylpyrimidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (265 aa) | ||||
pagP | Phospholipid:lipid A palmitoyltransferase; Transfers a palmitate residue from the sn-1 position of a phospholipid to the N-linked hydroxymyristate on the proximal unit of lipid A or its precursors. (175 aa) | ||||
pgsA | CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase; This protein catalyzes the committed step to the synthesis of the acidic phospholipids; Belongs to the CDP-alcohol phosphatidyltransferase class-I family. (182 aa) | ||||
AOM39587.1 | Sugar kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (531 aa) | ||||
fliI | Flagellum-specific ATP synthase FliI; Involved in type III protein export during flagellum assembly; Derived by automated computational analysis using gene prediction method: Protein Homology. (454 aa) | ||||
pyrC | Dihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate. (350 aa) | ||||
lpxL | Lipid A biosynthesis lauroyl acyltransferase; Catalyzes the transfer of laurate from lauroyl-acyl carrier protein (ACP) to Kdo(2)-lipid IV(A) to form Kdo(2)-(lauroyl)-lipid IV(A). (313 aa) | ||||
AOM39433.1 | 5'-deoxynucleotidase; Catalyzes the strictly specific dephosphorylation of 2'- deoxyribonucleoside 5'-monophosphates. (193 aa) | ||||
ackA | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (400 aa) | ||||
AOM39428.1 | Phosphate acetyltransferase; Involved in acetate metabolism. In the N-terminal section; belongs to the CobB/CobQ family. (714 aa) | ||||
AOM39401.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (93 aa) | ||||
AOM39400.1 | NUDIX hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (174 aa) | ||||
purF | Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (505 aa) | ||||
accD | acetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (315 aa) | ||||
ispG | 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase; Converts 2C-methyl-D-erythritol 2,4-cyclodiphosphate (ME- 2,4cPP) into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate. Belongs to the IspG family. (373 aa) | ||||
ndk | Nucleoside-diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (142 aa) | ||||
nadE | NAD+ synthase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses L-glutamine as a nitrogen source. (540 aa) | ||||
purL | Phosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. (1300 aa) | ||||
nadK | NAD(+) kinase; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. (299 aa) |