node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AJF66912.1 | AJF66913.1 | SVTN_23555 | SVTN_23560 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJF66912.1 | AJF66914.1 | SVTN_23555 | SVTN_23565 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJF66912.1 | AJF66915.1 | SVTN_23555 | SVTN_23570 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJF66912.1 | AJF67097.1 | SVTN_23555 | SVTN_24700 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | Catalyzes the fumarate and succinate interconversion; fumarate reductase is used under anaerobic conditions with glucose or glycerol as carbon source; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.912 |
AJF66912.1 | AJF67099.1 | SVTN_23555 | SVTN_24710 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | Membrane protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.902 |
AJF66912.1 | AJF68502.1 | SVTN_23555 | SVTN_33350 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.968 |
AJF66912.1 | AJF68504.1 | SVTN_23555 | SVTN_33360 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.900 |
AJF66912.1 | sdhA | SVTN_23555 | SVTN_24705 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | Part of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.996 |
AJF66912.1 | sdhA-2 | SVTN_23555 | SVTN_33355 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | Part of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.990 |
AJF66912.1 | sucC | SVTN_23555 | SVTN_23345 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | succinyl-CoA synthetase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. | 0.988 |
AJF66912.1 | sucD | SVTN_23555 | SVTN_23350 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | succinyl-CoA synthetase subunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. | 0.977 |
AJF66913.1 | AJF66912.1 | SVTN_23560 | SVTN_23555 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | 0.999 |
AJF66913.1 | AJF66914.1 | SVTN_23560 | SVTN_23565 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJF66913.1 | AJF66915.1 | SVTN_23560 | SVTN_23570 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJF66913.1 | AJF67097.1 | SVTN_23560 | SVTN_24700 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Catalyzes the fumarate and succinate interconversion; fumarate reductase is used under anaerobic conditions with glucose or glycerol as carbon source; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.990 |
AJF66913.1 | AJF67099.1 | SVTN_23560 | SVTN_24710 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Membrane protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.522 |
AJF66913.1 | AJF68502.1 | SVTN_23560 | SVTN_33350 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.985 |
AJF66913.1 | AJF68504.1 | SVTN_23560 | SVTN_33360 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.985 |
AJF66913.1 | sdhA | SVTN_23560 | SVTN_24705 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Part of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.913 |
AJF66913.1 | sdhA-2 | SVTN_23560 | SVTN_33355 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Part of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.900 |