Your Input: | |||||
infC | Translation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (175 aa) | ||||
rpmI | Pfam match to PF01632 Ribosomal_L35p, score 42.6, E-value 1E-005; Belongs to the bacterial ribosomal protein bL35 family. (65 aa) | ||||
rplT | 50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (118 aa) | ||||
rpsT | 30S ribosomal protein S20; Binds directly to 16S ribosomal RNA. (86 aa) | ||||
rplM | 50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (139 aa) | ||||
rpsI | Pfam match to PF00380 Ribosomal_S9, score 166, E-value 8.9E-047; Belongs to the universal ribosomal protein uS9 family. (129 aa) | ||||
rpmE | 50S ribosomal protein L31; Binds the 23S rRNA. (67 aa) | ||||
rpsF | 30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (118 aa) | ||||
rpsR | 30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (88 aa) | ||||
nusA | Transcription termination factor NusA; Participates in both transcription termination and antitermination. (391 aa) | ||||
rho | Transcription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (440 aa) | ||||
Abu_0292 | Conserved hypothetical protein. (125 aa) | ||||
rpmF | Pfam match to PF01783 Ribosomal_L32p, score 34.1, E-value 4E-003; Belongs to the bacterial ribosomal protein bL32 family. (50 aa) | ||||
rpsO | 30S ribosomal protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. (90 aa) | ||||
yajC | Preprotein translocase subunit; The SecYEG-SecDF-YajC-YidC holo-translocon (HTL) protein secretase/insertase is a supercomplex required for protein secretion, insertion of proteins into membranes, and assembly of membrane protein complexes. While the SecYEG complex is essential for assembly of a number of proteins and complexes, the SecDF-YajC-YidC subcomplex facilitates these functions. (87 aa) | ||||
lepA | GTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (595 aa) | ||||
rpsB | Pfam match to PF00318 Ribosomal_S2, score 343.1, E-value 4.3E-100; Belongs to the universal ribosomal protein uS2 family. (265 aa) | ||||
tsf | Translation elongation factor EF-Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (348 aa) | ||||
greA | Transcription elongation factor GreA; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides. (161 aa) | ||||
rplY | 50S ribosomal protein L25; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (178 aa) | ||||
rpoZ | DNA-directed RNA polymerase, omega chain; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (72 aa) | ||||
rpsJ | 30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (104 aa) | ||||
rplC | Pfam match to PF00297 Ribosomal_L3, score 56.2, E-value 9.6E-014. (191 aa) | ||||
rplD | 50S ribosomal protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. (203 aa) | ||||
rplW | 50S ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (93 aa) | ||||
rplB | 50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (275 aa) | ||||
rpsS | 30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (91 aa) | ||||
rplV | 50S ribosomal protein L22; This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity). (110 aa) | ||||
rpsC | 30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (234 aa) | ||||
rplP | 50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (141 aa) | ||||
rpmC | Pfam match to PF00831 Ribosomal_L29, score 50.1, E-value 6.9E-012; Belongs to the universal ribosomal protein uL29 family. (63 aa) | ||||
rpsQ | 30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (83 aa) | ||||
rplN | 50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa) | ||||
rplX | 50S ribosomal protein L24; One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (79 aa) | ||||
rplE | 50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (185 aa) | ||||
rpsN | 30S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site. (61 aa) | ||||
rpsH | 30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (132 aa) | ||||
rplF | 50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (178 aa) | ||||
rplR | 50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (119 aa) | ||||
rpsE | 30S ribosomal protein S5; With S4 and S12 plays an important role in translational accuracy; Belongs to the universal ribosomal protein uS5 family. (146 aa) | ||||
rplO | 50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (132 aa) | ||||
secY | Preprotein translocase, SecY subunit; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (420 aa) | ||||
map | Methionine aminopeptidase; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (254 aa) | ||||
infA | Translation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa) | ||||
ftsY | Signal recognition particle-docking GTPase FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). Interaction with SRP-RNC leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual components. (309 aa) | ||||
rplI | 50S ribosomal protein L9; Binds to the 23S rRNA. (148 aa) | ||||
rpoD | RNA polymerase sigma 70 factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. (626 aa) | ||||
rpmJ | Pfam match to PF00444 Ribosomal_L36, score 34.9, E-value 2E-003; Belongs to the bacterial ribosomal protein bL36 family. (37 aa) | ||||
rpsM | 30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (122 aa) | ||||
rpsK | 30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (130 aa) | ||||
rpsD | 30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (208 aa) | ||||
rpoA | DNA-directed RNA polymerase, alpha chain; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (332 aa) | ||||
rplQ | Pfam match to PF01196 Ribosomal_L17, score 153.2, E-value 6.3E-043. (116 aa) | ||||
Abu_1052 | Conserved hypothetical protein; Pfam match to PF01161 PBP, score 33.2, E-value 8.1E-008. (174 aa) | ||||
Abu_1064 | ABC transporter, ATP-binding protein; Pfam match to PF00005 ABC_tran, score 156.9, E-value 4.8E-044. (532 aa) | ||||
Abu_1174 | Conserved hypothetical protein; Pfam match to PF02482 Ribosomal_S30AE, score 43.8, E-value 5.4E-010. (180 aa) | ||||
pnp | Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. (725 aa) | ||||
secA | Protein translocase, SecA subunit; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane; Belongs to the SecA family. (872 aa) | ||||
sodB | Superoxide dismutase; Destroys radicals which are normally produced within the cells and which are toxic to biological systems. Belongs to the iron/manganese superoxide dismutase family. (191 aa) | ||||
ppa | Inorganic pyrophosphatase, manganese-dependent; Pfam matches to PF02833 DHHA2, score 123.6, E-value 5.1E-034, and to PF01368 DHH, score 32.2, E-value 3.3E-009. (306 aa) | ||||
atpC | ATP synthase F1 sector, epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. (125 aa) | ||||
atpD | ATP synthase F1 sector, beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (464 aa) | ||||
atpG | ATP synthase F1 sector, gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (295 aa) | ||||
atpA | ATP synthase F1 sector, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (505 aa) | ||||
atpH | ATP synthase F1 sector, delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (176 aa) | ||||
atpF | ATP synthase F0 sector, subunit B; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (170 aa) | ||||
atpF-2 | ATP synthase F0 sector, B' subunit; Pfam match to PF00430 ATP-synt_B, score 30.8, E-value 4.3E-006; Belongs to the ATPase B chain family. (140 aa) | ||||
rpmA | Pfam match to PF01016 Ribosomal_L27, score 189.8, E-value 5.8E-054; Belongs to the bacterial ribosomal protein bL27 family. (85 aa) | ||||
rplU | 50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (105 aa) | ||||
rnc | Ribonuclease III; Digests double-stranded RNA. Involved in the processing of primary rRNA transcript to yield the immediate precursors to the large and small rRNAs (23S and 16S). Processes some mRNAs, and tRNAs when they are encoded in the rRNA operon. Processes pre-crRNA and tracrRNA of type II CRISPR loci if present in the organism. (224 aa) | ||||
rpmH | Pfam match to PF00468 Ribosomal_L34, score 72.6, E-value 1.2E-018; Belongs to the bacterial ribosomal protein bL34 family. (44 aa) | ||||
def | Polypeptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (171 aa) | ||||
tig | Trigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (433 aa) | ||||
atpE | ATP synthase F0 sector, C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (104 aa) | ||||
rpmB | Pfam match to PF00830 Ribosomal_L28, score 83.2, E-value 7.3E-022; Belongs to the bacterial ribosomal protein bL28 family. (62 aa) | ||||
rpoC | DNA-directed RNA polymerase, beta' chain; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1511 aa) | ||||
rpoB | DNA-directed RNA polymerase, beta chain; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1382 aa) | ||||
rplL | 50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (123 aa) | ||||
rplJ | 50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (162 aa) | ||||
rplA | 50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (232 aa) | ||||
rplK | 50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (141 aa) | ||||
nusG | Transcription termination factor NusG; Participates in transcription elongation, termination and antitermination. (175 aa) | ||||
secE | Preprotein translocase, SecE subunit; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation. (60 aa) | ||||
rpmG | Pfam match to PF00471 Ribosomal_L33, score 64.3, E-value 3.6E-016; Belongs to the bacterial ribosomal protein bL33 family. (56 aa) | ||||
tufA | Elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (402 aa) | ||||
rimM | 16S rRNA processing protein; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (178 aa) | ||||
rpsP | Pfam match to PF00886 Ribosomal_S16, score 121.7, E-value 1.9E-033; Belongs to the bacterial ribosomal protein bS16 family. (75 aa) | ||||
ffh | Signal recognition particle protein; Pfam matches to PF00448 SRP54, score 338.2, E-value 1.3E-098, and to PF02978 SRP_SPB, score 160.3, E-value 4.5E-045, and to PF02881 SRP54_N, score 46.6, E-value 7.9E-011. (450 aa) | ||||
fus | Translational elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 [...] (702 aa) | ||||
rpsG | 30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (155 aa) | ||||
rpsL | 30S ribosomal protein S12; With S4 and S5 plays an important role in translational accuracy. (127 aa) | ||||
rplS | 50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (118 aa) | ||||
trmD | tRNA (guanine-N1)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (229 aa) | ||||
atpB | ATP synthase F0 sector, A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (228 aa) | ||||
efp | Translation elongation factor EF-P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (186 aa) | ||||
rpsA | 30S ribosomal protein S1; Pfam match to PF00575 S1, score 95.4, E-value 1.5E-025. (550 aa) | ||||
prfB | Peptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (365 aa) | ||||
smpB | tmRNA-binding protein SmpB; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switc [...] (158 aa) | ||||
dksA | DnaK suppressor protein DksA; Pfam match to PF01258 zf-dskA_traR, score 35.7, E-value 1.5E-007. (123 aa) | ||||
rpsU | Pfam match to PF01165 Ribosomal_S21, score 99.7, E-value 7.7E-027; Belongs to the bacterial ribosomal protein bS21 family. (73 aa) | ||||
secG | Protein-export membrane protein SecG; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family. (115 aa) | ||||
frr | Ribosome releasing factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa) |