STRINGSTRING
rpsT rpsT yhgI yhgI rho rho truA truA rnt rnt tyrS tyrS prfA prfA pth pth yeaZ yeaZ frr frr tsf tsf rpsB rpsB mesJ mesJ rpmB rpmB rpmG rpmG rpoZ rpoZ prfB prfB lysS lysS ybeY ybeY yraL yraL valS valS rpoD rpoD rpsU rpsU ygjD ygjD rpmA rpmA rplU rplU rpsA rpsA serS serS fmt fmt def def yrdC yrdC tufA tufA nusG nusG rplK rplK rplA rplA rplJ rplJ rplL rplL rpoB rpoB rpoC rpoC rluD rluD metG metG rpsJ rpsJ rplC rplC rplD rplD rplW rplW rplB rplB rpsS rpsS rplV rplV rpsC rpsC rplP rplP rpmC rpmC rpsQ rpsQ rplN rplN rplX rplX rplE rplE rpsN rpsN rpsH rpsH rplF rplF rplR rplR rpsE rpsE rpmD rpmD rplO rplO rpmJ rpmJ rpsM rpsM rpsK rpsK rpsD rpsD rpoA rpoA rplQ rplQ yfgB yfgB hisS hisS trpS trpS glyQ glyQ glyS glyS proS proS ileS ileS glnS glnS efp efp rpmE rpmE asnS asnS rpsF rpsF rpsR rpsR rplI rplI rplS rplS rpsP rpsP cysS cysS infA infA cca cca alaS alaS ftsJ ftsJ nusA nusA infB infB rbfA rbfA truB truB rpsO rpsO pnp pnp yabC yabC fliA fliA rnc rnc lepB lepB lepA lepA miaA miaA yjfH yjfH lipA lipA lipB lipB leuS leuS yggJ yggJ yqgF yqgF rplM rplM rpsI rpsI yfhC yfhC argS argS gltX gltX aspS aspS smpB smpB sppA sppA ycfB ycfB rpmF rpmF rne rne pheT pheT pheS pheS rplT rplT rpmI rpmI infC infC thrS thrS rpoH rpoH yhhF yhhF yceA yceA fusA fusA rpsG rpsG rpsL rpsL ksgA ksgA rpmH rpmH thdF thdF gidA gidA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rpsT30S ribosomal protein S20; Binds directly to 16S ribosomal RNA. (88 aa)
yhgIFe/S biogenesis protein NfuA; Involved in iron-sulfur cluster biogenesis. Binds a 4Fe-4S cluster, can transfer this cluster to apoproteins, and thereby intervenes in the maturation of Fe/S proteins. Could also act as a scaffold/chaperone for damaged Fe/S proteins. (207 aa)
rhoTranscription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (419 aa)
truAtRNA pseudouridine synthase A; Formation of pseudouridine at positions 38, 39 and 40 in the anticodon stem and loop of transfer RNAs. (264 aa)
rntRibonuclease T; Trims short 3' overhangs of a variety of RNA species, leaving a one or two nucleotide 3' overhang. Responsible for the end-turnover of tRNA: specifically removes the terminal AMP residue from uncharged tRNA (tRNA-C-C-A). Also appears to be involved in tRNA biosynthesis. (215 aa)
tyrSTyrosine--tRNA ligase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 1 subfamily. (496 aa)
prfAPeptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (364 aa)
pthPeptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (191 aa)
yeaZHypothetical proteins. (230 aa)
frrRibosome-recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa)
tsfElongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (270 aa)
rpsB30S ribosomal protein S2; Protein synthesis; Belongs to the universal ribosomal protein uS2 family. (240 aa)
mesJtRNA(Ile)-lysidine synthase; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. Belongs to the tRNA(Ile)-lysidine synthase family. (400 aa)
rpmB50S ribosomal protein L28; Protein synthesis; Belongs to the bacterial ribosomal protein bL28 family. (78 aa)
rpmG50S ribosomal protein L33; Protein synthesis; Belongs to the bacterial ribosomal protein bL33 family. (55 aa)
rpoZDNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (62 aa)
prfBPeptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (278 aa)
lysSLysine--tRNA ligase; Protein synthesis; Belongs to the class-II aminoacyl-tRNA synthetase family. (493 aa)
ybeYEndoribonuclease YbeY; Single strand-specific metallo-endoribonuclease involved in late-stage 70S ribosome quality control and in maturation of the 3' terminus of the 16S rRNA. (152 aa)
yraLRibosomal RNA small subunit methyltransferase I; Catalyzes the 2'-O-methylation of the ribose of cytidine 1402 (C1402) in 16S rRNA. (281 aa)
valSValine--tRNA ligase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner. (881 aa)
rpoDRNA polymerase sigma factor RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. (601 aa)
rpsU30S ribosomal protein S21; Protein synthesis; Belongs to the bacterial ribosomal protein bS21 family. (71 aa)
ygjDtRNA N6-adenosine threonylcarbamoyltransferase; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaE and TsaB. TsaD likely plays a direct catalytic role in this reaction; Belongs to the KAE1 / TsaD family. (340 aa)
rpmA50S ribosomal protein L27; Protein synthesis; Belongs to the bacterial ribosomal protein bL27 family. (87 aa)
rplU50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (103 aa)
rpsA30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. (554 aa)
serSSerine--tRNA ligase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (429 aa)
fmtMethionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. (319 aa)
defPeptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (152 aa)
yrdCThreonylcarbamoyl-AMP synthase; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Catalyzes the conversion of L-threonine, HCO(3)(-)/CO(2) and ATP to give threonylcarbamoyl-AMP (TC-AMP) as the acyladenylate intermediate, with the release of diphosphate. (194 aa)
tufAElongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (394 aa)
nusGTranscription termination/antitermination protein NusG; Participates in transcription elongation, termination and antitermination. In the absence of Rho, increases the rate of transcription elongation by the RNA polymerase (RNAP), probably by partially suppressing pausing. In the presence of Rho, modulates most Rho-dependent termination events by interacting with the RNAP to render the complex more susceptible to the termination activity of Rho. May be required to overcome a kinetic limitation of Rho to function at certain terminators. Also involved in ribosomal RNA transcriptional ant [...] (181 aa)
rplK50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (142 aa)
rplA50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (242 aa)
rplJ50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (161 aa)
rplL50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (123 aa)
rpoBDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1342 aa)
rpoCDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1405 aa)
rluDPseudouridine synthase; Responsible for synthesis of pseudouridine from uracil. Belongs to the pseudouridine synthase RluA family. (314 aa)
metGMethionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (550 aa)
rpsJ30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (103 aa)
rplC50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (215 aa)
rplD50S ribosomal protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. (201 aa)
rplW50S ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (101 aa)
rplB50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (275 aa)
rpsS30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (142 aa)
rplV50S ribosomal protein L22; This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity). (111 aa)
rpsC30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (236 aa)
rplP50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (136 aa)
rpmC50S ribosomal protein L29; Protein synthesis; Belongs to the universal ribosomal protein uL29 family. (68 aa)
rpsQ30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (92 aa)
rplN50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (123 aa)
rplX50S ribosomal protein L24; One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (104 aa)
rplE50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (178 aa)
rpsN30S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (101 aa)
rpsH30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (130 aa)
rplF50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center. (178 aa)
rplR50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (117 aa)
rpsE30S ribosomal protein S5; With S4 and S12 plays an important role in translational accuracy; Belongs to the universal ribosomal protein uS5 family. (166 aa)
rpmD50S ribosomal protein L30; Protein synthesis. (58 aa)
rplO50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (144 aa)
rpmJ50S ribosomal protein L36; Protein synthesis; Belongs to the bacterial ribosomal protein bL36 family. (38 aa)
rpsM30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (118 aa)
rpsK30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (131 aa)
rpsD30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (225 aa)
rpoADNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (328 aa)
rplQ50S ribosomal protein L17; Protein synthesis. (122 aa)
yfgBDual-specificity RNA methyltransferase RlmN; Specifically methylates position 2 of adenine 2503 in 23S rRNA and position 2 of adenine 37 in tRNAs. m2A2503 modification seems to play a crucial role in the proofreading step occurring at the peptidyl transferase center and thus would serve to optimize ribosomal fidelity; Belongs to the radical SAM superfamily. RlmN family. (382 aa)
hisSHistidine--tRNA ligase; Protein synthesis. (432 aa)
trpSTryptophan--tRNA ligase; Catalyzes the attachment of tryptophan to tRNA(Trp). Belongs to the class-I aminoacyl-tRNA synthetase family. (334 aa)
glyQGlycine--tRNA ligase alpha subunit; Protein synthesis. (302 aa)
glySGlycine--tRNA ligase beta subunit; Protein synthesis. (694 aa)
proSProline--tRNA ligase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves deacy [...] (561 aa)
ileSIsoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (940 aa)
glnSGlutamine--tRNA ligase; Protein synthesis. (549 aa)
efpElongation factor P; Involved in peptide bond synthesis. Alleviates ribosome stalling that occurs when 3 or more consecutive Pro residues or the sequence PPG is present in a protein, possibly by augmenting the peptidyl transferase activity of the ribosome. Modification of Lys-35 is required for alleviation; Belongs to the elongation factor P family. (189 aa)
rpmE50S ribosomal protein L31; Binds the 23S rRNA. (71 aa)
asnSAsparagine--tRNA ligase; Protein synthesis. (466 aa)
rpsF30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (113 aa)
rpsR30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (75 aa)
rplI50S ribosomal protein L9; Binds to the 23S rRNA. (150 aa)
rplS50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (115 aa)
rpsP30S ribosomal protein S16; Protein synthesis; Belongs to the bacterial ribosomal protein bS16 family. (80 aa)
cysSCysteine--tRNA ligase; Protein synthesis; Belongs to the class-I aminoacyl-tRNA synthetase family. (463 aa)
infATranslation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa)
ccaCCA-adding enzyme; Catalyzes the addition and repair of the essential 3'- terminal CCA sequence in tRNAs without using a nucleic acid template. Adds these three nucleotides in the order of C, C, and A to the tRNA nucleotide-73, using CTP and ATP as substrates and producing inorganic pyrophosphate; Belongs to the tRNA nucleotidyltransferase/poly(A) polymerase family. Bacterial CCA-adding enzyme type 2 subfamily. (403 aa)
alaSAlanine--tRNA ligase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain; Belongs to the class-II aminoacyl-tRNA synthetase family. (873 aa)
ftsJRibosomal RNA large subunit methyltransferase E; Specifically methylates the uridine in position 2552 of 23S rRNA at the 2'-O position of the ribose in the fully assembled 50S ribosomal subunit. (203 aa)
nusATranscription termination/antitermination protein NusA; Participates in both transcription termination and antitermination. (494 aa)
infBTranslation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (841 aa)
rbfARibosome-binding factor A; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA. (125 aa)
truBtRNA pseudouridine synthase B; Responsible for synthesis of pseudouridine from uracil-55 in the psi GC loop of transfer RNAs; Belongs to the pseudouridine synthase TruB family. Type 1 subfamily. (327 aa)
rpsO30S ribosomal protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. (89 aa)
pnpPolyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. (705 aa)
yabCRibosomal RNA small subunit methyltransferase H; Specifically methylates the N4 position of cytidine in position 1402 (C1402) of 16S rRNA. (309 aa)
fliARNA polymerase sigma factor FliA; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor controls the expression of flagella-related genes; Belongs to the sigma-70 factor family. FliA subfamily. (246 aa)
rncRibonuclease 3; Digests double-stranded RNA. Involved in the processing of primary rRNA transcript to yield the immediate precursors to the large and small rRNAs (23S and 16S). Processes some mRNAs, and tRNAs when they are encoded in the rRNA operon. Processes pre-crRNA and tracrRNA of type II CRISPR loci if present in the organism. (226 aa)
lepBSignal peptidase I; Protein fate; Belongs to the peptidase S26 family. (313 aa)
lepAElongation factor 4; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (599 aa)
miaAtRNA dimethylallyltransferase; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in tRNAs that read codons beginning with uridine, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A); Belongs to the IPP transferase family. (322 aa)
yjfHProtein synthesis; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family. (250 aa)
lipALipoyl synthase; Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives. (316 aa)
lipBOctanoyltransferase; Catalyzes the transfer of endogenously produced octanoic acid from octanoyl-acyl-carrier-protein onto the lipoyl domains of lipoate- dependent enzymes. Lipoyl-ACP can also act as a substrate although octanoyl-ACP is likely to be the physiological substrate. (216 aa)
leuSLeucine--tRNA ligase; Protein synthesis; Belongs to the class-I aminoacyl-tRNA synthetase family. (864 aa)
yggJRibosomal RNA small subunit methyltransferase E; Specifically methylates the N3 position of the uracil ring of uridine 1498 (m3U1498) in 16S rRNA. Acts on the fully assembled 30S ribosomal subunit. (205 aa)
yqgFPutative pre-16S rRNA nuclease; Could be a nuclease involved in processing of the 5'-end of pre-16S rRNA; Belongs to the YqgF nuclease family. (144 aa)
rplM50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (142 aa)
rpsI30S ribosomal protein S9; Protein synthesis; Belongs to the universal ribosomal protein uS9 family. (129 aa)
yfhCtRNA-specific adenosine deaminase; Catalyzes the deamination of adenosine to inosine at the wobble position 34 of tRNA(Arg2); Belongs to the cytidine and deoxycytidylate deaminase family. (151 aa)
argSArginine--tRNA ligase; Protein synthesis. (576 aa)
gltXGlutamate--tRNA ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (473 aa)
aspSAspartate--tRNA ligase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (560 aa)
smpBSsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (160 aa)
sppAProtease 4; Protein fate. (615 aa)
ycfBtRNA-specific 2-thiouridylase MnmA; Catalyzes the 2-thiolation of uridine at the wobble position (U34) of tRNA(Lys), tRNA(Glu) and tRNA(Gln), leading to the formation of s(2)U34, the first step of tRNA-mnm(5)s(2)U34 synthesis. Sulfur is provided by IscS, via a sulfur-relay system. Binds ATP and its substrate tRNAs; Belongs to the MnmA/TRMU family. (368 aa)
rpmF50S ribosomal protein L32; Protein synthesis; Belongs to the bacterial ribosomal protein bL32 family. (59 aa)
rneRne protein; Transcription. (783 aa)
pheTPhenylalanine--tRNA ligase beta subunit; Protein synthesis; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (803 aa)
pheSPhenylalanine--tRNA ligase alpha subunit; Protein synthesis; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (333 aa)
rplT50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (117 aa)
rpmI50S ribosomal protein L35; Protein synthesis; Belongs to the bacterial ribosomal protein bL35 family. (66 aa)
infCTranslation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (196 aa)
thrSThreonine--tRNA ligase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged L-seryl-tRNA(Thr). (636 aa)
rpoHRNA polymerase sigma factor RpoH; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is involved in regulation of expression of heat shock genes. (281 aa)
yhhFRibosomal RNA small subunit methyltransferase D; Specifically methylates the guanine in position 966 of 16S rRNA in the assembled 30S particle; Belongs to the methyltransferase superfamily. RsmD family. (193 aa)
yceAUPF0176 protein WIGBR0650; Unclassified; Belongs to the UPF0176 family. (315 aa)
fusAElongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. (705 aa)
rpsG30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa)
rpsL30S ribosomal protein S12; With S4 and S5 plays an important role in translational accuracy. (125 aa)
ksgARibosomal RNA small subunit methyltransferase A; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits. (261 aa)
rpmH50S ribosomal protein L34; Protein synthesis; Belongs to the bacterial ribosomal protein bL34 family. (47 aa)
thdFtRNA modification GTPase MnmE; Exhibits a very high intrinsic GTPase hydrolysis rate. Involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA- cmnm(5)s(2)U34; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase superfamily. TrmE GTPase family. (453 aa)
gidAtRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG; NAD-binding protein involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA-cmnm(5)s(2)U34; Belongs to the MnmG family. (628 aa)
Your Current Organism:
Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis
NCBI taxonomy Id: 36870
Other names: Glossina brevipalpis P-endosymbiont, W. glossinidia endosymbiont of Glossina brevipalpis, Wigglesworthia brevipalpis, Wigglesworthia glossinidia brevipalpis
Server load: low (14%) [HD]