STRINGSTRING
ndhF ndhF ycf4 ycf4 cemA cemA clpP clpP petB petB petD petD rpl16 rpl16 rpl22 rpl22 rps19-1 rps19-1 rpl2-A rpl2-A accD accD ndhA ndhA ndhH ndhH ndhB1 ndhB1 matK matK matK-2 matK-2 psbA psbA matK-3 matK-3 atpF atpF rpoC2 rpoC2 psbM psbM ycf3 ycf3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ndhFNAD(P)H-quinone oxidoreductase subunit 5, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (By similarity). (760 aa)
ycf4Photosystem I assembly protein Ycf4; Seems to be required for the assembly of the photosystem I complex; Belongs to the Ycf4 family. (184 aa)
cemAChloroplast envelope membrane protein; May be involved in proton extrusion. Indirectly promotes efficient inorganic carbon uptake into chloroplasts. Belongs to the Cema family. (228 aa)
clpPATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (196 aa)
petBCytochrome b6; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (215 aa)
petDCytochrome b6-f complex subunit 4; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (165 aa)
rpl1650S ribosomal protein L16, chloroplastic; Belongs to the universal ribosomal protein uL16 family. (135 aa)
rpl2250S ribosomal protein L22, chloroplastic; This protein binds specifically to 23S rRNA; Belongs to the universal ribosomal protein uL22 family. (132 aa)
rps19-130S ribosomal protein S19, chloroplastic; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (92 aa)
rpl2-A50S ribosomal protein L2, chloroplastic; Belongs to the universal ribosomal protein uL2 family. (274 aa)
accDAcetyl-coenzyme A carboxylase carboxyl transferase subunit beta, chloroplastic; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (498 aa)
ndhANAD(P)H-quinone oxidoreductase subunit 1, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (365 aa)
ndhHNAD(P)H-quinone oxidoreductase subunit H, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (393 aa)
ndhB1NAD(P)H-quinone oxidoreductase subunit 2 A, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (510 aa)
matKMaturase K; Usually encoded in the trnK tRNA gene intron. Probably assists in splicing its own and other chloroplast group II introns. Belongs to the intron maturase 2 family. MatK subfamily. (510 aa)
matK-2Maturase K; Usually encoded in the trnK tRNA gene intron. Probably assists in splicing its own and other chloroplast group II introns. Belongs to the intron maturase 2 family. MatK subfamily. (432 aa)
psbAPhotosystem II protein D1; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. (353 aa)
matK-3Maturase K; Usually encoded in the trnK tRNA gene intron. Probably assists in splicing its own and other chloroplast group II introns. Belongs to the intron maturase 2 family. MatK subfamily. (510 aa)
atpFATP synthase subunit b, chloroplastic; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (184 aa)
rpoC2DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1390 aa)
psbMPhotosystem II reaction center protein M; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface. (34 aa)
ycf3Photosystem I assembly protein Ycf3; Essential for the assembly of the photosystem I (PSI) complex. May act as a chaperone-like factor to guide the assembly of the PSI subunits; Belongs to the Ycf3 family. (168 aa)
Your Current Organism:
Populus trichocarpa
NCBI taxonomy Id: 3694
Other names: P. trichocarpa, Populus balsamifera subsp. trichocarpa, Populus balsamifera subsp. trichocarpa (Torr. & A.Gray) Brayshaw, Populus trichocarpa Torr. & A.Gray, black cottonwood, western balsam poplar
Server load: low (18%) [HD]