STRINGSTRING
ndhB1 ndhB1 ndhG ndhG ndhA ndhA matK matK ycf2 ycf2 A0A2K1Y5M3 A0A2K1Y5M3 rps15 rps15 TIC214 TIC214 matK-2 matK-2 psbA psbA matK-3 matK-3 psbK psbK atpA atpA atpH atpH atpI atpI rps2 rps2 psbM psbM atpB atpB rbcL rbcL accD accD rps18 rps18 ndhH ndhH rpl20 rpl20 rps12-A rps12-A clpP clpP rps11 rps11 rpl36 rpl36 ycf2-1 ycf2-1 rps7-A rps7-A ndhF ndhF ccsA ccsA ndhD ndhD psaC psaC ndhE ndhE
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ndhB1NAD(P)H-quinone oxidoreductase subunit 2 A, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (510 aa)
ndhGNAD(P)H-quinone oxidoreductase subunit 6, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (By similarity). (176 aa)
ndhANAD(P)H-quinone oxidoreductase subunit 1, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (365 aa)
matKMaturase K; Usually encoded in the trnK tRNA gene intron. Probably assists in splicing its own and other chloroplast group II introns. Belongs to the intron maturase 2 family. MatK subfamily. (510 aa)
ycf2Protein Ycf2; Probable ATPase of unknown function. Its presence in a non- photosynthetic plant (Epifagus virginiana) and experiments in tobacco indicate that it has an essential function which is probably not related to photosynthesis; Belongs to the Ycf2 family. (1562 aa)
A0A2K1Y5M3Protein Ycf2; Probable ATPase of unknown function. Its presence in a non- photosynthetic plant (Epifagus virginiana) and experiments in tobacco indicate that it has an essential function which is probably not related to photosynthesis; Belongs to the Ycf2 family. (1889 aa)
rps1530S ribosomal protein S15, chloroplastic; Belongs to the universal ribosomal protein uS15 family. (90 aa)
TIC214Protein TIC 214; Involved in protein precursor import into chloroplasts. May be part of an intermediate translocation complex acting as a protein- conducting channel at the inner envelope. Belongs to the TIC214 family. (1822 aa)
matK-2Maturase K; Usually encoded in the trnK tRNA gene intron. Probably assists in splicing its own and other chloroplast group II introns. Belongs to the intron maturase 2 family. MatK subfamily. (432 aa)
psbAPhotosystem II protein D1; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. (353 aa)
matK-3Maturase K; Usually encoded in the trnK tRNA gene intron. Probably assists in splicing its own and other chloroplast group II introns. Belongs to the intron maturase 2 family. MatK subfamily. (510 aa)
psbKPhotosystem II reaction center protein K; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (64 aa)
atpAATP synthase subunit alpha, chloroplastic; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (507 aa)
atpHATP synthase subunit c, chloroplastic; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (81 aa)
atpIATP synthase subunit a, chloroplastic; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (247 aa)
rps230S ribosomal protein S2, chloroplastic. (236 aa)
psbMPhotosystem II reaction center protein M; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface. (34 aa)
atpBATP synthase subunit beta, chloroplastic; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (498 aa)
rbcLRibulose bisphosphate carboxylase large chain; RuBisCO catalyzes two reactions: the carboxylation of D- ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate in the photorespiration process. Both reactions occur simultaneously and in competition at the same active site. Belongs to the RuBisCO large chain family. Type I subfamily. (475 aa)
accDAcetyl-coenzyme A carboxylase carboxyl transferase subunit beta, chloroplastic; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (498 aa)
rps1830S ribosomal protein S18, chloroplastic; Belongs to the bacterial ribosomal protein bS18 family. (101 aa)
ndhHNAD(P)H-quinone oxidoreductase subunit H, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (393 aa)
rpl2050S ribosomal protein L20, chloroplastic; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (117 aa)
rps12-A30S ribosomal protein S12-A, chloroplastic; With S4 and S5 plays an important role in translational accuracy. Located at the interface of the 30S and 50S subunits (By similarity). (123 aa)
clpPATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (196 aa)
rps1130S ribosomal protein S11, chloroplastic; Belongs to the universal ribosomal protein uS11 family. (138 aa)
rpl3650S ribosomal protein L36, chloroplastic. (37 aa)
ycf2-1Protein Ycf2; Probable ATPase of unknown function. Its presence in a non- photosynthetic plant (Epifagus virginiana) and experiments in tobacco indicate that it has an essential function which is probably not related to photosynthesis; Belongs to the Ycf2 family. (2285 aa)
rps7-A30S ribosomal protein S7, chloroplastic; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. (155 aa)
ndhFNAD(P)H-quinone oxidoreductase subunit 5, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (By similarity). (760 aa)
ccsACytochrome c biogenesis protein CcsA; Required during biogenesis of c-type cytochromes (cytochrome c6 and cytochrome f) at the step of heme attachment. (321 aa)
ndhDNAD(P)H-quinone oxidoreductase chain 4, chloroplastic; Belongs to the complex I subunit 4 family. (500 aa)
psaCPhotosystem I iron-sulfur center; Apoprotein for the two 4Fe-4S centers FA and FB of photosystem I (PSI); essential for photochemical activity. FB is the terminal electron acceptor of PSI, donating electrons to ferredoxin. The C-terminus interacts with PsaA/B/D and helps assemble the protein into the PSI complex. Required for binding of PsaD and PsaE to PSI. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, [...] (81 aa)
ndhENAD(P)H-quinone oxidoreductase subunit 4L, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (101 aa)
Your Current Organism:
Populus trichocarpa
NCBI taxonomy Id: 3694
Other names: P. trichocarpa, Populus balsamifera subsp. trichocarpa, Populus balsamifera subsp. trichocarpa (Torr. & A.Gray) Brayshaw, Populus trichocarpa Torr. & A.Gray, black cottonwood, western balsam poplar
Server load: low (14%) [HD]