Your Input: | |||||
ABP52718.1 | PFAM: FAD-dependent pyridine nucleotide-disulphide oxidoreductase. (395 aa) | ||||
nuoB1 | NADH-quinone oxidoreductase, B subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (188 aa) | ||||
ABP52877.1 | NADH dehydrogenase (ubiquinone), 30 kDa subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 30 kDa subunit family. (201 aa) | ||||
nuoH | NADH dehydrogenase (quinone); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (320 aa) | ||||
nuoI | 4Fe-4S ferredoxin, iron-sulfur binding domain protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (216 aa) | ||||
ABP52886.1 | NADH-ubiquinone/plastoquinone oxidoreductase, chain 6; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (187 aa) | ||||
nuoK | NADH-ubiquinone oxidoreductase, chain 4L; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (127 aa) | ||||
ABP52888.1 | TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain L; PFAM: NADH/Ubiquinone/plastoquinone (complex I). (649 aa) | ||||
ABP52889.1 | TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain M; PFAM: NADH/Ubiquinone/plastoquinone (complex I). (503 aa) | ||||
nuoN | NADH dehydrogenase (quinone); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (516 aa) | ||||
ABP53178.1 | NADH-ubiquinone/plastoquinone oxidoreductase, chain 3; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. (125 aa) | ||||
ABP53245.1 | PFAM: respiratory-chain NADH dehydrogenase, subunit 1. (309 aa) | ||||
ABP53246.1 | Hypothetical protein. (187 aa) | ||||
nuoK-2 | NADH-ubiquinone oxidoreductase, chain 4L; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (100 aa) | ||||
ABP53248.1 | NADH dehydrogenase (quinone); PFAM: NADH/Ubiquinone/plastoquinone (complex I). (621 aa) | ||||
ABP53249.1 | TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain M; PFAM: NADH/Ubiquinone/plastoquinone (complex I). (496 aa) | ||||
nuoN-2 | NADH dehydrogenase (quinone); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (462 aa) | ||||
ABP53382.1 | PFAM: FAD-dependent pyridine nucleotide-disulphide oxidoreductase. (441 aa) | ||||
ABP53565.1 | Cytochrome-c oxidase; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (644 aa) | ||||
ppk | Polyphosphate kinase; Catalyzes the reversible transfer of the terminal phosphate of ATP to form a long-chain polyphosphate (polyP). Belongs to the polyphosphate kinase 1 (PPK1) family. (760 aa) | ||||
ABP54172.1 | TIGRFAM: succinate dehydrogenase and fumarate reductase iron-sulfur protein; PFAM: ferredoxin; 4Fe-4S ferredoxin, iron-sulfur binding domain protein. (251 aa) | ||||
ABP54173.1 | TIGRFAM: succinate dehydrogenase or fumarate reductase, flavoprotein subunit; PFAM: fumarate reductase/succinate dehydrogenase flavoprotein domain protein. (643 aa) | ||||
ABP54174.1 | TIGRFAM: succinate dehydrogenase (or fumarate reductase) cytochrome b subunit, b558 family. (227 aa) | ||||
ABP54575.1 | PFAM: FAD-dependent pyridine nucleotide-disulphide oxidoreductase. (433 aa) | ||||
ABP54594.1 | Cytochrome-c oxidase; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (665 aa) | ||||
ABP54786.1 | TIGRFAM: cytochrome d ubiquinol oxidase, subunit II; PFAM: cytochrome bd ubiquinol oxidase, subunit II. (332 aa) | ||||
ABP54787.1 | PFAM: cytochrome bd ubiquinol oxidase, subunit I. (470 aa) | ||||
ABP55522.1 | PFAM: cytochrome oxidase assembly. (326 aa) | ||||
ctaB | Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. (342 aa) | ||||
ABP55726.1 | PFAM: Cytochrome b/b6, N-terminal domain. (536 aa) | ||||
ABP55727.1 | PFAM: Rieske [2Fe-2S] domain protein. (361 aa) | ||||
ABP55728.1 | PFAM: cytochrome c, class I. (277 aa) | ||||
ABP55729.1 | PFAM: cytochrome c oxidase, subunit III. (199 aa) | ||||
ABP55734.1 | Cytochrome c oxidase, subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (323 aa) | ||||
atpC | H+-transporting two-sector ATPase, delta/epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. (94 aa) | ||||
atpD | ATP synthase F1, beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (486 aa) | ||||
atpG | ATP synthase F1, gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (309 aa) | ||||
atpA | ATP synthase F1, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (550 aa) | ||||
atpH | ATP synthase F1, delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (274 aa) | ||||
atpF | ATP synthase F0, B subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (175 aa) | ||||
atpE | ATP synthase F0, C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (74 aa) | ||||
atpB | ATP synthase F0, A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (259 aa) | ||||
ABP56199.1 | PFAM: fumarate reductase/succinate dehydrogenase flavoprotein domain protein; FAD dependent oxidoreductase. (637 aa) | ||||
ABP56200.1 | TIGRFAM: succinate dehydrogenase and fumarate reductase iron-sulfur protein; PFAM: ferredoxin. (366 aa) | ||||
nuoN-3 | Proton-translocating NADH-quinone oxidoreductase, chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (517 aa) | ||||
ABP56483.1 | TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain M; PFAM: NADH/Ubiquinone/plastoquinone (complex I). (510 aa) | ||||
ABP56484.1 | TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain L; PFAM: NADH-Ubiquinone oxidoreductase (complex I), chain 5/L domain protein; NADH/Ubiquinone/plastoquinone (complex I). (652 aa) | ||||
nuoK-3 | NADH-ubiquinone oxidoreductase, chain 4L; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (105 aa) | ||||
ABP56486.1 | NADH-ubiquinone/plastoquinone oxidoreductase, chain 6; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (256 aa) | ||||
nuoI-2 | NADH-quinone oxidoreductase, chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (211 aa) | ||||
nuoH-2 | NADH dehydrogenase (quinone); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (447 aa) | ||||
ABP56489.1 | NADH-quinone oxidoreductase, chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (839 aa) | ||||
ABP56490.1 | NADH-quinone oxidoreductase, F subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (443 aa) | ||||
ABP56491.1 | TIGRFAM: NADH-quinone oxidoreductase, E subunit; PFAM: NADH dehydrogenase (ubiquinone), 24 kDa subunit. (317 aa) | ||||
nuoD1 | NADH dehydrogenase I, D subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (441 aa) | ||||
nuoC | NADH (or F420H2) dehydrogenase, subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (245 aa) | ||||
nuoB2 | NADH-quinone oxidoreductase, B subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (226 aa) | ||||
nuoA | NADH-ubiquinone/plastoquinone oxidoreductase, chain 3; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (121 aa) | ||||
nuoD2 | NADH dehydrogenase (quinone); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (388 aa) | ||||
ppa | Inorganic diphosphatase; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions. (168 aa) |