STRINGSTRING
GPDHC1 GPDHC1 GPAT8 GPAT8 GPAT9 GPAT9 LPAT1 LPAT1 LPAT2 LPAT2 GPAT2 GPAT2 LPAT5 LPAT5 GPAT7 GPAT7 GPAT1 GPAT1 NPC3 NPC3 LPAT3 LPAT3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
GPDHC1Glycerol-3-phosphate dehydrogenase [NAD(+)] GPDHC1, cytosolic; Involved in cell redox homeostasis. Required for maintaining a steady state cellular NADH/NAD(+) ratio through a mitochondrial glycerol-3-phosphate redox shuttle. May function with the mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase SDP6 to shuttle reducing equivalents into the mitochondria for respiration. (462 aa)
GPAT8Probable glycerol-3-phosphate acyltransferase 8; Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate, an essential step in glycerolipid biosynthesis. (500 aa)
GPAT9Glycerol-3-phosphate acyltransferase 9; Essential protein. Required for male and female gametophytes development. Exhibits sn-1 acyltransferase activity with high specificity for acyl-coenzyme A, thus triggering storage lipid biosynthesis and playing an important role in the Kennedy pathway of glycerolipid biosynthesis. Catalyzes triacylglycerol (TAG) accumulation involved in membrane lipid and oil biosynthesis, especially in seeds. Contributes also to the biosynthesis of both polar lipids and TAG in developing leaves, as well as lipid droplet production in developing pollen grains. Se [...] (376 aa)
LPAT11-acyl-sn-glycerol-3-phosphate acyltransferase LPAT1, chloroplastic; Plastidial enzyme of the prokaryotic glycerol-3-phosphate pathway that converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at position sn-2. Utilizes palmitoyl-ACP (16:0-ACP) to produce phosphatidic acid containing a saturated group at position sn-2, which is characteristic of lipids synthesized by the prokaryotic pathway. In vitro, can use 16:0-CoA as acyl donor. Essential for embryo development during the transition from the globular to the heart stage when chloroplasts begin [...] (356 aa)
LPAT21-acyl-sn-glycerol-3-phosphate acyltransferase 2; Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating acyl moiety at the 2 position. Has preference for C- 18-CoA substrates compared to C-16-CoA substrates. Required for female but not male gametophyte development. (389 aa)
GPAT2Probable glycerol-3-phosphate acyltransferase 2; Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate, an essential step in glycerolipid biosynthesis. Belongs to the GPAT/DAPAT family. (530 aa)
LPAT5Probable 1-acyl-sn-glycerol-3-phosphate acyltransferase 5; May convert lysophosphatidic acid (LPA) into phosphatidic acid by incorporating acyl moiety at the 2 position (By similarity). Has no activity when expressed in bacteria or yeast. (375 aa)
GPAT7Glycerol-3-phosphate acyltransferase 7; Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate, an essential step in glycerolipid biosynthesis. (500 aa)
GPAT1Glycerol-3-phosphate acyltransferase 1; Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate, an essential step in glycerolipid biosynthesis. Involved in pollen development, by being required for tapetum differentiation and male fertility. In addition to the sporophytic effect, it also exerts a gametophytic effect on pollen performance. Belongs to the GPAT/DAPAT family. (585 aa)
NPC3Non-specific phospholipase C3; Possesses specific phosphatase activity toward lysophosphatidic acid (LPA) in vitro. Does not show phospholipase C activity. May play a role in signal transduction and storage lipid synthesis. May be involved in brassinolide-mediated signaling in root development. (523 aa)
LPAT31-acyl-sn-glycerol-3-phosphate acyltransferase 3; Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating acyl moiety at the 2 position. Has preference for C- 18-CoA substrates compared to C-16-CoA substrates; Belongs to the 1-acyl-sn-glycerol-3-phosphate acyltransferase family. (376 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: medium (48%) [HD]