node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ADR1 | EDS1 | Q9FW44 | Q9SU72 | Disease resistance protein ADR1; Disease resistance (R) protein that mediates resistance against Hyaloperonospora parasitica in a salicylic acid-dependent manner. Also mediates resistance against Erysiphe cichoracearum is both salicylic acid-dependent and partially NPR1-dependent. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth. | Protein EDS1; Positive regulator of basal resistance and of effector- triggered immunity specifically mediated by TIR-NB-LRR (TNL) resistance proteins. Disruption by bacterial effector of EDS1-TIR-NB-LRR resistance protein interactions constitutes the first step in resistance activation. Acts redundantly with salicylic acid to regulate resistance gene-mediated signaling. Triggers early plant defenses and hypersensitive response independently of PAD4, and then recruits PAD4 to potentiate plant defenses through the accumulation of salicylic acid. Nuclear localization is essential for bas [...] | 0.900 |
ADR1 | K19M22.8 | Q9FW44 | F4KGE0 | Disease resistance protein ADR1; Disease resistance (R) protein that mediates resistance against Hyaloperonospora parasitica in a salicylic acid-dependent manner. Also mediates resistance against Erysiphe cichoracearum is both salicylic acid-dependent and partially NPR1-dependent. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth. | LRR protein. | 0.793 |
ADR1 | PAD4 | Q9FW44 | Q9S745 | Disease resistance protein ADR1; Disease resistance (R) protein that mediates resistance against Hyaloperonospora parasitica in a salicylic acid-dependent manner. Also mediates resistance against Erysiphe cichoracearum is both salicylic acid-dependent and partially NPR1-dependent. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth. | Lipase-like PAD4; Probable lipase required downstream of MPK4 for accumulation of the plant defense-potentiating molecule, salicylic acid, thus contributing to the plant innate immunity against invasive biotrophic pathogens and to defense mechanisms upon recognition of microbe- associated molecular patterns (MAMPs). Participates in the regulation of various molecular and physiological processes that influence fitness. Together with SG101, required for programmed cell death (PCD) triggered by NBS-LRR resistance proteins (e.g. RPS4, RPW8.1 and RPW8.2) in response to the fungal toxin fumo [...] | 0.806 |
ADR1 | RNL | Q9FW44 | Q0WL81 | Disease resistance protein ADR1; Disease resistance (R) protein that mediates resistance against Hyaloperonospora parasitica in a salicylic acid-dependent manner. Also mediates resistance against Erysiphe cichoracearum is both salicylic acid-dependent and partially NPR1-dependent. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth. | tRNA ligase 1; Essential component of stress-response pathways entailing repair of RNA breaks with 2',3'-cyclic phosphate and 5'-OH ends. Tri-functional enzyme that repairs RNA breaks with 2',3'-cyclic-PO(4) and 5'-OH ends. The ligation activity requires three sequential enzymatic activities: opening of the 2'3'-cyclic phosphodiester bond of the 5' half-tRNA leaving a 2'-phosphomonoester (CPDase activity), phosphorylation of the 5' terminus of the 3' half- tRNA in the presence of ATP (kinase activity) and ligation of the two tRNA halves in an ATP-dependent reaction (ligase activity). D [...] | 0.927 |
ADR1 | SAG101 | Q9FW44 | Q4F883 | Disease resistance protein ADR1; Disease resistance (R) protein that mediates resistance against Hyaloperonospora parasitica in a salicylic acid-dependent manner. Also mediates resistance against Erysiphe cichoracearum is both salicylic acid-dependent and partially NPR1-dependent. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth. | Senescence-associated carboxylesterase 101; Acyl hydrolase that triggers the leaf senescence onset. Can use triolein as substrate to produce oleic acids. | 0.803 |
ADR1 | T26I12.70 | Q9FW44 | Q9M3D0 | Disease resistance protein ADR1; Disease resistance (R) protein that mediates resistance against Hyaloperonospora parasitica in a salicylic acid-dependent manner. Also mediates resistance against Erysiphe cichoracearum is both salicylic acid-dependent and partially NPR1-dependent. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth. | Esterase/lipase/thioesterase family protein. | 0.541 |
ADR1 | TIR | Q9FW44 | Q9SSN3 | Disease resistance protein ADR1; Disease resistance (R) protein that mediates resistance against Hyaloperonospora parasitica in a salicylic acid-dependent manner. Also mediates resistance against Erysiphe cichoracearum is both salicylic acid-dependent and partially NPR1-dependent. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth. | Toll/interleukin-1 receptor-like protein; Disease resistance protein. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via a direct or indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth (By similarity). | 0.897 |
EDS1 | ADR1 | Q9SU72 | Q9FW44 | Protein EDS1; Positive regulator of basal resistance and of effector- triggered immunity specifically mediated by TIR-NB-LRR (TNL) resistance proteins. Disruption by bacterial effector of EDS1-TIR-NB-LRR resistance protein interactions constitutes the first step in resistance activation. Acts redundantly with salicylic acid to regulate resistance gene-mediated signaling. Triggers early plant defenses and hypersensitive response independently of PAD4, and then recruits PAD4 to potentiate plant defenses through the accumulation of salicylic acid. Nuclear localization is essential for bas [...] | Disease resistance protein ADR1; Disease resistance (R) protein that mediates resistance against Hyaloperonospora parasitica in a salicylic acid-dependent manner. Also mediates resistance against Erysiphe cichoracearum is both salicylic acid-dependent and partially NPR1-dependent. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth. | 0.900 |
EDS1 | K19M22.8 | Q9SU72 | F4KGE0 | Protein EDS1; Positive regulator of basal resistance and of effector- triggered immunity specifically mediated by TIR-NB-LRR (TNL) resistance proteins. Disruption by bacterial effector of EDS1-TIR-NB-LRR resistance protein interactions constitutes the first step in resistance activation. Acts redundantly with salicylic acid to regulate resistance gene-mediated signaling. Triggers early plant defenses and hypersensitive response independently of PAD4, and then recruits PAD4 to potentiate plant defenses through the accumulation of salicylic acid. Nuclear localization is essential for bas [...] | LRR protein. | 0.810 |
EDS1 | PAD4 | Q9SU72 | Q9S745 | Protein EDS1; Positive regulator of basal resistance and of effector- triggered immunity specifically mediated by TIR-NB-LRR (TNL) resistance proteins. Disruption by bacterial effector of EDS1-TIR-NB-LRR resistance protein interactions constitutes the first step in resistance activation. Acts redundantly with salicylic acid to regulate resistance gene-mediated signaling. Triggers early plant defenses and hypersensitive response independently of PAD4, and then recruits PAD4 to potentiate plant defenses through the accumulation of salicylic acid. Nuclear localization is essential for bas [...] | Lipase-like PAD4; Probable lipase required downstream of MPK4 for accumulation of the plant defense-potentiating molecule, salicylic acid, thus contributing to the plant innate immunity against invasive biotrophic pathogens and to defense mechanisms upon recognition of microbe- associated molecular patterns (MAMPs). Participates in the regulation of various molecular and physiological processes that influence fitness. Together with SG101, required for programmed cell death (PCD) triggered by NBS-LRR resistance proteins (e.g. RPS4, RPW8.1 and RPW8.2) in response to the fungal toxin fumo [...] | 0.999 |
EDS1 | RNL | Q9SU72 | Q0WL81 | Protein EDS1; Positive regulator of basal resistance and of effector- triggered immunity specifically mediated by TIR-NB-LRR (TNL) resistance proteins. Disruption by bacterial effector of EDS1-TIR-NB-LRR resistance protein interactions constitutes the first step in resistance activation. Acts redundantly with salicylic acid to regulate resistance gene-mediated signaling. Triggers early plant defenses and hypersensitive response independently of PAD4, and then recruits PAD4 to potentiate plant defenses through the accumulation of salicylic acid. Nuclear localization is essential for bas [...] | tRNA ligase 1; Essential component of stress-response pathways entailing repair of RNA breaks with 2',3'-cyclic phosphate and 5'-OH ends. Tri-functional enzyme that repairs RNA breaks with 2',3'-cyclic-PO(4) and 5'-OH ends. The ligation activity requires three sequential enzymatic activities: opening of the 2'3'-cyclic phosphodiester bond of the 5' half-tRNA leaving a 2'-phosphomonoester (CPDase activity), phosphorylation of the 5' terminus of the 3' half- tRNA in the presence of ATP (kinase activity) and ligation of the two tRNA halves in an ATP-dependent reaction (ligase activity). D [...] | 0.651 |
EDS1 | SAG101 | Q9SU72 | Q4F883 | Protein EDS1; Positive regulator of basal resistance and of effector- triggered immunity specifically mediated by TIR-NB-LRR (TNL) resistance proteins. Disruption by bacterial effector of EDS1-TIR-NB-LRR resistance protein interactions constitutes the first step in resistance activation. Acts redundantly with salicylic acid to regulate resistance gene-mediated signaling. Triggers early plant defenses and hypersensitive response independently of PAD4, and then recruits PAD4 to potentiate plant defenses through the accumulation of salicylic acid. Nuclear localization is essential for bas [...] | Senescence-associated carboxylesterase 101; Acyl hydrolase that triggers the leaf senescence onset. Can use triolein as substrate to produce oleic acids. | 0.999 |
EDS1 | T26I12.70 | Q9SU72 | Q9M3D0 | Protein EDS1; Positive regulator of basal resistance and of effector- triggered immunity specifically mediated by TIR-NB-LRR (TNL) resistance proteins. Disruption by bacterial effector of EDS1-TIR-NB-LRR resistance protein interactions constitutes the first step in resistance activation. Acts redundantly with salicylic acid to regulate resistance gene-mediated signaling. Triggers early plant defenses and hypersensitive response independently of PAD4, and then recruits PAD4 to potentiate plant defenses through the accumulation of salicylic acid. Nuclear localization is essential for bas [...] | Esterase/lipase/thioesterase family protein. | 0.923 |
EDS1 | TIR | Q9SU72 | Q9SSN3 | Protein EDS1; Positive regulator of basal resistance and of effector- triggered immunity specifically mediated by TIR-NB-LRR (TNL) resistance proteins. Disruption by bacterial effector of EDS1-TIR-NB-LRR resistance protein interactions constitutes the first step in resistance activation. Acts redundantly with salicylic acid to regulate resistance gene-mediated signaling. Triggers early plant defenses and hypersensitive response independently of PAD4, and then recruits PAD4 to potentiate plant defenses through the accumulation of salicylic acid. Nuclear localization is essential for bas [...] | Toll/interleukin-1 receptor-like protein; Disease resistance protein. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via a direct or indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth (By similarity). | 0.954 |
K19M22.8 | ADR1 | F4KGE0 | Q9FW44 | LRR protein. | Disease resistance protein ADR1; Disease resistance (R) protein that mediates resistance against Hyaloperonospora parasitica in a salicylic acid-dependent manner. Also mediates resistance against Erysiphe cichoracearum is both salicylic acid-dependent and partially NPR1-dependent. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth. | 0.793 |
K19M22.8 | EDS1 | F4KGE0 | Q9SU72 | LRR protein. | Protein EDS1; Positive regulator of basal resistance and of effector- triggered immunity specifically mediated by TIR-NB-LRR (TNL) resistance proteins. Disruption by bacterial effector of EDS1-TIR-NB-LRR resistance protein interactions constitutes the first step in resistance activation. Acts redundantly with salicylic acid to regulate resistance gene-mediated signaling. Triggers early plant defenses and hypersensitive response independently of PAD4, and then recruits PAD4 to potentiate plant defenses through the accumulation of salicylic acid. Nuclear localization is essential for bas [...] | 0.810 |
K19M22.8 | PAD4 | F4KGE0 | Q9S745 | LRR protein. | Lipase-like PAD4; Probable lipase required downstream of MPK4 for accumulation of the plant defense-potentiating molecule, salicylic acid, thus contributing to the plant innate immunity against invasive biotrophic pathogens and to defense mechanisms upon recognition of microbe- associated molecular patterns (MAMPs). Participates in the regulation of various molecular and physiological processes that influence fitness. Together with SG101, required for programmed cell death (PCD) triggered by NBS-LRR resistance proteins (e.g. RPS4, RPW8.1 and RPW8.2) in response to the fungal toxin fumo [...] | 0.843 |
K19M22.8 | RNL | F4KGE0 | Q0WL81 | LRR protein. | tRNA ligase 1; Essential component of stress-response pathways entailing repair of RNA breaks with 2',3'-cyclic phosphate and 5'-OH ends. Tri-functional enzyme that repairs RNA breaks with 2',3'-cyclic-PO(4) and 5'-OH ends. The ligation activity requires three sequential enzymatic activities: opening of the 2'3'-cyclic phosphodiester bond of the 5' half-tRNA leaving a 2'-phosphomonoester (CPDase activity), phosphorylation of the 5' terminus of the 3' half- tRNA in the presence of ATP (kinase activity) and ligation of the two tRNA halves in an ATP-dependent reaction (ligase activity). D [...] | 0.497 |
K19M22.8 | SAG101 | F4KGE0 | Q4F883 | LRR protein. | Senescence-associated carboxylesterase 101; Acyl hydrolase that triggers the leaf senescence onset. Can use triolein as substrate to produce oleic acids. | 0.540 |
K19M22.8 | TIR | F4KGE0 | Q9SSN3 | LRR protein. | Toll/interleukin-1 receptor-like protein; Disease resistance protein. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via a direct or indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth (By similarity). | 0.956 |