STRINGSTRING
F11I11.120 F11I11.120 YUC3 YUC3 YUC7 YUC7 CYP79B2 CYP79B2 NIT1 NIT1 NIT2 NIT2 CYP79B3 CYP79B3 AAO4 AAO4 AAO2 AAO2 AAO1 AAO1 YUC6 YUC6 TAR2 TAR2 ISS1 ISS1 AMI1 AMI1 YUC10 YUC10 YUC11 YUC11 TAR1 TAR1 TAA1 TAA1 YUC1 YUC1 F7A19.21 F7A19.21 F7A19.20 F7A19.20
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
F11I11.120Probable amidase At4g34880; Belongs to the amidase family. (512 aa)
YUC3Probable indole-3-pyruvate monooxygenase YUCCA3; Involved in auxin biosynthesis. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in roots. (437 aa)
YUC7Probable indole-3-pyruvate monooxygenase YUCCA7; Involved in auxin biosynthesis. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in roots. (431 aa)
CYP79B2Tryptophan N-monooxygenase 1; Converts tryptophan to indole-3-acetaldoxime, a precursor for tryptophan-derived glucosinolates and indole-3-acetic acid (IAA). Involved in the biosynthetic pathway to 4-hydroxyindole-3-carbonyl nitrile (4-OH-ICN), a cyanogenic metabolite required for inducible pathogen defense. Belongs to the cytochrome P450 family. (541 aa)
NIT1Nitrilase 1; Can convert indole-3-acetonitrile to the plant hormone indole-3-acetic acid; Belongs to the carbon-nitrogen hydrolase superfamily. Nitrilase family. (346 aa)
NIT2Nitrilase 2; Can convert indole-3-acetonitrile to the plant hormone indole-3-acetic acid. (339 aa)
CYP79B3Tryptophan N-monooxygenase 2; Converts tryptophan to indole-3-acetaldoxime, a precursor for tryptophan derived glucosinolates and indole-3-acetic acid (IAA). Belongs to the cytochrome P450 family. (543 aa)
AAO4Aldehyde oxidase 4; Aldehyde oxidase with a broad substrate specificity. Involved in the accumulation of benzoic acid (BA) in siliques. Delays and protects siliques from senescence by catalyzing aldehyde detoxification in siliques. Catalyzes the oxidation of an array of aromatic and aliphatic aldehydes, including vanillin and the reactive carbonyl species (RCS) acrolein, 4- hydroxyl-2-nonenal (HNE), and malondialdehyde (MDA). Belongs to the xanthine dehydrogenase family. (1337 aa)
AAO2Indole-3-acetaldehyde oxidase; In higher plant aldehyde oxidases (AO) appear to be homo- and heterodimeric assemblies of AO subunits with probably different physiological functions. In vitro, AO-gamma uses heptaldehyde, benzaldehyde, naphthaldehyde and cinnamaldehyde as substrates; AO-beta uses indole-3-acetaldehyde (IAAld), indole-3-aldehyde (IAld) and naphtaldehyde; the AAO2-AAO3 dimer uses abscisic aldehyde; Belongs to the xanthine dehydrogenase family. (1321 aa)
AAO1Indole-3-acetaldehyde oxidase; In higher plants aldehyde oxidases (AO) appear to be homo- and heterodimeric assemblies of AO subunits with probably different physiological functions. AO-alpha may be involved in the biosynthesis of auxin, and in biosynthesis of abscisic acid (ABA) in seeds. In vitro, AO-alpha uses heptaldehyde, protocatechualdehyde, benzaldehyde, indole-3-aldehyde (IAld), indole-3-acetaldehyde (IAAld), cinnamaldehyde and citral as substrates; AO-beta uses IAAld, IAld and naphtaldehyde as substrates; Belongs to the xanthine dehydrogenase family. (1368 aa)
YUC6Indole-3-pyruvate monooxygenase YUCCA6; Involved in auxin biosynthesis via the indole-3-pyruvic acid (IPA) pathway. Also able to convert in vitro phenyl pyruvate (PPA) to phenyl acetic acid (PAA). Required for the formation of floral organs and vascular tissues. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in shoots. (417 aa)
TAR2Tryptophan aminotransferase-related protein 2; Involved in auxin production. Both TAA1 and TAR2 are required for maintaining proper auxin levels in roots, while TAA1, TAR1 and TAR2 are required for proper embryo patterning. Involved in the maintenance of the root stem cell niches. (440 aa)
ISS1Aromatic aminotransferase ISS1; Coordinates and prevents auxin (IAA) and ethylene biosynthesis, thus regulating auxin homeostasis in young seedlings. Shows aminotransferase activity with methionine; can use the ethylene biosynthetic intermediate L- methionine (L-Met) as an amino donor and the auxin biosynthetic intermediate, indole-3-pyruvic acid (3-IPA) as an amino acceptor to produce L-tryptophan (L-Trp) and 2-oxo-4-methylthiobutyric acid (KMBA). Can also use tryptophan (Trp), phenylalanine (Phe), and tyrosine (Tyr) as substrates. Regulates tryptophan (Trp) homeostasis and catabolism [...] (394 aa)
AMI1Amidase 1; Amidase involved in auxin biosynthesis. Converts indole-3- acetamide to indole-3-acetate. Converts phenyl-2-acetamide (PAM) to phenyl-2-acetate. Substrate preference is PAM > IAM. Can also use L-asparagine, oleamide and 1-naphtalene-acetamide as substrates, but not indole-3- acetonitrile or indole-3-acetyl-L-aspartic acid. (425 aa)
YUC10Probable indole-3-pyruvate monooxygenase YUCCA10; Involved in auxin biosynthesis. Belongs to the FMO family. (383 aa)
YUC11Probable indole-3-pyruvate monooxygenase YUCCA11; Involved in auxin biosynthesis. Belongs to the FMO family. (391 aa)
TAR1Tryptophan aminotransferase-related protein 1; Probably involved in auxin production. TAA1, TAR1 and TAR2 are required for proper embryo patterning. Belongs to the alliinase family. (388 aa)
TAA1L-tryptophan--pyruvate aminotransferase 1; L-tryptophan aminotransferase involved in auxin (IAA) biosynthesis. Can convert L-tryptophan and pyruvate to indole-3-pyruvic acid (IPA) and alanine. Catalyzes the first step in IPA branch of the auxin biosynthetic pathway. Required for auxin production to initiate multiple change in growth in response to environmental and developmental cues. It is also active with phenylalanine, tyrosine, leucine, alanine, methionine and glutamine. Both TAA1 and TAR2 are required for maintaining proper auxin levels in roots, while TAA1, TAR1 and TAR2 are requ [...] (391 aa)
YUC1Probable indole-3-pyruvate monooxygenase YUCCA1; Involved in auxin biosynthesis, but not in the tryptamine or the CYP79B2/B3 branches. Catalyzes in vitro the N-oxidation of tryptamine to form N-hydroxyl tryptamine. Involved during embryogenesis and seedling development. Required for the formation of floral organs and vascular tissues. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in shoots. (414 aa)
F7A19.212-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein; Belongs to the iron/ascorbate-dependent oxidoreductase family. (308 aa)
F7A19.202-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein; Belongs to the iron/ascorbate-dependent oxidoreductase family. (312 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (20%) [HD]