STRINGSTRING
CYP74B2 CYP74B2 LOX2 LOX2 LOX1 LOX1 4CLL5 4CLL5 F14J9.6 F14J9.6 OPR2 OPR2 OPR1 OPR1 AOC4 AOC4 DAD1-2 DAD1-2 CYP74A CYP74A JMT JMT DOX2 DOX2 LOX6 LOX6 LOX4 LOX4 OPR3 OPR3 LOX3 LOX3 AOC3 AOC3 AOC2 AOC2 AOC1 AOC1 LOX5 LOX5 DOX1 DOX1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
CYP74B2Probable inactive linolenate hydroperoxide lyase. (384 aa)
LOX2Lipoxygenase 2, chloroplastic; 13S-lipoxygenase that can use linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Required for the wound-induced synthesis of jasmonic acid (JA) in leaves. (896 aa)
LOX1Linoleate 9S-lipoxygenase 1; 9S-lipoxygenase that can use linoleic acid or linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Function as regulators of root development by controlling the emergence of lateral roots. (859 aa)
4CLL54-coumarate--CoA ligase-like 5; Contributes to jasmonic acid biosynthesis by initiating the beta-oxidative chain shortening of its precursors. Converts 12-oxo- phytodienoic acid (OPDA) and 3-oxo-2-(2'-pentenyl)-cyclopentane-1- octanoic acid (OPC-8:0) into OPDA-CoA and OPC-8:0-CoA, respectively; Belongs to the ATP-dependent AMP-binding enzyme family. (546 aa)
F14J9.6Putative 12-oxophytodienoate reductase-like protein 1; Putative oxophytodienoate reductase that may be involved in the biosynthesis or metabolism of oxylipin signaling molecules. Belongs to the NADH:flavin oxidoreductase/NADH oxidase family. (324 aa)
OPR212-oxophytodienoate reductase 2; Specifically cleaves olefinic bonds in alpha,beta-unsaturated carbonyls and may be involved in detoxification or modification of these reactive compounds (Probable). May be involved in the biosynthesis or metabolism of oxylipin signaling molecules (Probable). In vitro, reduces 9R,13R-12- oxophytodienoic acid (9R,13R-OPDA) to 9R,13R-OPC-8:0, but only poorly 9S,13S-OPDA, the natural precursor of jasmonic acid (JA). Can detoxify the explosive 2,4,6-trinitrotoluene (TNT) in vitro and in vivo by catalyzing its nitroreduction to form hydroxylamino-dinitrotol [...] (374 aa)
OPR112-oxophytodienoate reductase 1; Specifically cleaves olefinic bonds in alpha,beta-unsaturated carbonyls and may be involved in detoxification or modification of these reactive compounds. May be involved in the biosynthesis or metabolism of oxylipin signaling molecules (Probable). In vitro, reduces 9R,13R-12-oxophytodienoic acid (9R,13R-OPDA) to 9R,13R-OPC-8:0, but only poorly 9S,13S-OPDA, the natural precursor of jasmonic acid. Can detoxify the explosive 2,4,6-trinitrotoluene (TNT) in vitro and in vivo by catalyzing its nitroreduction to form hydroxylamino-dinitrotoluene (HADNT). (372 aa)
AOC4Allene oxide cyclase 4, chloroplastic; Involved in the production of 12-oxo-phytodienoic acid (OPDA), a precursor of jasmonic acid; Belongs to the allene oxide cyclase family. (254 aa)
DAD1-2Phospholipase A(1) DAD1, chloroplastic; Sn-1-specific phospholipase that releases free fatty acids from phospholipids. Low activity on galactolipids and triacylglycerols. Catalyzes the initial step of jasmonic acid biosynthesis. Not essential for jasmonate biosynthesis after wounding or upon pathogen infection. Belongs to the AB hydrolase superfamily. Lipase family. (447 aa)
CYP74AAllene oxide synthase, chloroplastic. (518 aa)
JMTJasmonate O-methyltransferase; Catalyzes the methylation of jasmonate into methyljasmonate, a plant volatile that acts as an important cellular regulator mediating diverse developmental processes and defense responses. (389 aa)
DOX2Alpha-dioxygenase 2; Alpha-dioxygenase that catalyzes the primary oxygenation of fatty acids into oxylipins. May be involved in the senescence process. Belongs to the peroxidase family. (631 aa)
LOX6Lipoxygenase 6, chloroplastic; Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure (By similarity). 13S-lipoxygenase that can use linolenic acid as substrates. (917 aa)
LOX4Lipoxygenase 4, chloroplastic; Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure (By similarity). 13S-lipoxygenase that can use linolenic acid as substrates. (926 aa)
OPR312-oxophytodienoate reductase 3, N-terminally processed; Specifically cleaves olefinic bonds in cyclic enones. Involved in the biosynthesis of jasmonic acid (JA) and perhaps in biosynthesis or metabolism of other oxylipin signaling moleclules. Required for the spatial and temporal regulation of JA levels during dehiscence of anthers, promoting the stomium degeneration program. In vitro, reduces 9S,13S-12- oxophytodienoic acid (9S,13S-OPDA) and 9R,13R-OPDA to 9S,13S-OPC-8:0 and 9R,13R-OPC-8:0, respectively. Can detoxify the explosive 2,4,6-trinitrotoluene (TNT) in vitro by catalyzing it [...] (391 aa)
LOX3Lipoxygenase 3, chloroplastic; 13S-lipoxygenase that can use linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure (By similarity). (919 aa)
AOC3Allene oxide cyclase 3, chloroplastic; Involved in the production of 12-oxo-phytodienoic acid (OPDA), a precursor of jasmonic acid; Belongs to the allene oxide cyclase family. (258 aa)
AOC2Allene oxide cyclase 2, chloroplastic; Involved in the production of 12-oxo-phytodienoic acid (OPDA), a precursor of jasmonic acid; Belongs to the allene oxide cyclase family. (253 aa)
AOC1Allene oxide cyclase 1, chloroplastic; Involved in the production of 12-oxo-phytodienoic acid (OPDA), a precursor of jasmonic acid; Belongs to the allene oxide cyclase family. (254 aa)
LOX5Linoleate 9S-lipoxygenase 5; 9S-lipoxygenase that can use linoleic acid or linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Function as regulators of root development by controlling the emergence of lateral roots. (886 aa)
DOX1Alpha-dioxygenase 1; Alpha-dioxygenase that catalyzes the primary oxygenation of fatty acids into oxylipins. Mediates a protection against oxidative stress and cell death, probably by generating some lipid-derived molecules. Promotes local and systemic plant defense in a salicylic acid (SA)-dependent manner, including the establishment of systemic acquired resistance (SAR) in response to incompatible interaction. Involved in a negative regulation of abscisic acid (ABA)-mediated signaling pathway. (639 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (26%) [HD]