Your Input: | |||||
A0A1P8B2B4 | NADH-plastoquinone oxidoreductase subunit. (90 aa) | ||||
nad1 | NADH-ubiquinone oxidoreductase chain 1; Belongs to the complex I subunit 1 family. (325 aa) | ||||
nad5 | NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (669 aa) | ||||
nad2 | NADH dehydrogenase subunit 2. (488 aa) | ||||
cox2 | Cytochrome c oxidase subunit 2; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1. (260 aa) | ||||
ccmB | Cytochrome c biogenesis B. (206 aa) | ||||
nad9 | NADH dehydrogenase subunit 9; Belongs to the complex I 30 kDa subunit family. (190 aa) | ||||
ccmFC | Cytochrome c biogenesis FC. (442 aa) | ||||
nad6 | NADH-ubiquinone oxidoreductase chain 6; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (205 aa) | ||||
cob | Cytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex) that is part of the mitochondrial respiratory chain. The b-c1 complex mediates electron transfer from ubiquinol to cytochrome c. Contributes to the generation of a proton gradient across the mitochondrial membrane that is then used for ATP synthesis. (393 aa) | ||||
nad4 | NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (495 aa) | ||||
mttB | Transport membrane protein. (280 aa) | ||||
nad3 | NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (118 aa) | ||||
ccmC | Putative cytochrome c biosynthesis ccmC-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes. Belongs to the CcmC/CycZ/HelC family. (256 aa) | ||||
nad7 | NADH dehydrogenase subunit 7; Belongs to the complex I 49 kDa subunit family. (394 aa) | ||||
matR | Maturase. (656 aa) | ||||
ccmFN2 | Cytochrome c biogenesis FN2. (203 aa) | ||||
ccmFN1 | Cytochrome c biogenesis FN1. (382 aa) | ||||
nad4L | NADH dehydrogenase subunit 4L. (100 aa) | ||||
atp4 | ATPase subunit 4. (192 aa) | ||||
ABCI5 | Putative cytochrome c biosynthesis ccmC-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes. Belongs to the CcmC/CycZ/HelC family. (256 aa) | ||||
ND2 | NADH-ubiquinone oxidoreductase chain 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (499 aa) | ||||
T9J22.27 | Glycosyl hydrolase superfamily protein; Belongs to the glycosyl hydrolase 17 family. (388 aa) | ||||
ND5 | NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (669 aa) | ||||
ND6 | NADH-ubiquinone oxidoreductase chain 6; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (205 aa) | ||||
COX1 | Cytochrome c oxidase subunit 1; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and t [...] (527 aa) | ||||
COX3 | Cytochrome c oxidase subunit 3; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and t [...] (265 aa) | ||||
CCMC | Putative cytochrome c biosynthesis ccmC-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes; Belongs to the CcmC/CycZ/HelC family. (232 aa) | ||||
ND3 | NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (119 aa) | ||||
M1130_ARATH | Uncharacterized mitochondrial protein AtMg01130. (106 aa) | ||||
ND1 | NADH-ubiquinone oxidoreductase chain 1; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (325 aa) | ||||
CCMB | Putative cytochrome c biogenesis ccmB-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes. (206 aa) | ||||
CCMFC | Cytochrome c biogenesis CcmF C-terminal-like mitochondrial protein; Forms a complex with CCMFN1, CCMFN2 and CCMH that performs the assembly of heme with c-type apocytochromes in mitochondria. Belongs to the CcmF/CycK/Ccl1/NrfE/CcsA family. (442 aa) | ||||
NAD7 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). Component of the iron-sulfur (IP) fragment of the enzyme. (394 aa) | ||||
ND4 | NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (495 aa) | ||||
ND4L | NADH-ubiquinone oxidoreductase chain 4L; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (100 aa) | ||||
CCMFN2 | Cytochrome c biogenesis CcmF N-terminal-like mitochondrial protein 2; Forms a complex with CCMFC, CCMFN1 and CCMH that performs the assembly of heme with c-type apocytochromes in mitochondria. Belongs to the CcmF/CycK/Ccl1/NrfE/CcsA family. (203 aa) | ||||
Q3EC47_ARATH | NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (118 aa) | ||||
T18C6.13 | NADH-Ubiquinone/plastoquinone (Complex I) protein. (214 aa) | ||||
F20D10.40 | Uncharacterized protein At4g37920. (427 aa) | ||||
NAD9 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (190 aa) | ||||
CCMFN1 | Cytochrome c biogenesis CcmF N-terminal-like mitochondrial protein 1; Forms a complex with CCMFC, CCMFN2 and CCMH that performs the assembly of heme with c-type apocytochromes in mitochondria. Belongs to the CcmF/CycK/Ccl1/NrfE/CcsA family. (382 aa) | ||||
CCMH | Cytochrome c-type biogenesis CcmH-like mitochondrial protein; Plays a central role in mitochondrial cytochrome c maturation. Probable component of a heme lyase complex involved in the reduction of apocytochrome c. Forms a complex with CCMF proteins (CCMFC, CCMFN1 and CCMFN2) that performs the assembly of heme with c-type apocytochromes in mitochondria. (159 aa) |