STRINGSTRING
FAB2 FAB2 FAD7 FAD7 FAD6 FAD6 FAD2 FAD2 FAD8 FAD8 FAD3 FAD3 FAE1 FAE1 FATA FATA KAS KAS LACS7 LACS7 LACS6 LACS6 AAE15 AAE15 ADS3 ADS3 LACS3 LACS3 LACS9 LACS9 S-ACP-DES3 S-ACP-DES3 AAE16 AAE16 LACS8 LACS8 FATB FATB MOD1 MOD1 FATA2 FATA2 FAD4 FAD4 LACS4 LACS4
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
FAB2Stearoyl-[acyl-carrier-protein] 9-desaturase 7, chloroplastic; Converts stearoyl-ACP to oleoyl-ACP by introduction of a cis double bond between carbons 9 and 10 of the acyl chain. Required for the activation of certain jasmonic acid (JA)-mediated responses and the repression of the salicylic acid (SA) signaling pathway. Belongs to the fatty acid desaturase type 2 family. (401 aa)
FAD7Sn-2 acyl-lipid omega-3 desaturase (ferredoxin), chloroplastic; Chloroplast omega-3 fatty acid desaturase introduces the third double bond in the biosynthesis of 16:3 and 18:3 fatty acids, important constituents of plant membranes. It is thought to use ferredoxin as an electron donor and to act on fatty acids esterified to galactolipids, sulfolipids and phosphatidylglycerol. (446 aa)
FAD6Omega-6 fatty acid desaturase, chloroplastic; Chloroplast omega-6 fatty acid desaturase introduces the second double bond in the biosynthesis of 16:3 and 18:3 fatty acids, important constituents of plant membranes. It is thought to use ferredoxin as an electron donor and to act on fatty acids esterified to galactolipids, sulfolipids and phosphatidylglycerol. (448 aa)
FAD2Delta(12)-fatty-acid desaturase; ER (microsomal) omega-6 fatty acid desaturase introduces the second double bond in the biosynthesis of 18:3 fatty acids, important constituents of plant membranes. Delta(12)-desaturase with regioselectivity determined by the double bond (delta(9) position) and carboxyl group of the substrate. Can use both 16:1 and 18:1 fatty acids as substrates. It is thought to use cytochrome b5 as an electron donor and to act on fatty acids esterified to phosphatidylcholine (PC) and, possibly, other phospholipids. Very low constitutive hydroxylation activity. Required [...] (383 aa)
FAD8Temperature-sensitive sn-2 acyl-lipid omega-3 desaturase (ferredoxin), chloroplastic; Chloroplast omega-3 fatty acid desaturase introduces the third double bond in the biosynthesis of 16:3 and 18:3 fatty acids, important constituents of plant membranes. It is thought to use ferredoxin as an electron donor and to act on fatty acids esterified to galactolipids, sulfolipids and phosphatidylglycerol. (435 aa)
FAD3Acyl-lipid omega-3 desaturase (cytochrome b5), endoplasmic reticulum; Microsomal (ER) omega-3 fatty acid desaturase introduces the third double bond in the biosynthesis of 18:3 fatty acids, important constituents of plant membranes. It is thought to use cytochrome b5 as an electron donor and to act on fatty acids esterified to phosphatidylcholine and, possibly, other phospholipids. (386 aa)
FAE13-ketoacyl-CoA synthase 18; Contributes to fatty acids elongation and stockage in developing seeds. Active on both saturated and mono-unsaturated acyl- CoAs of 16 and 18 carbons. Required for the elongation of C18 to C20 and of C20 to C22 fatty acids. Mediates also the synthesis of VLCFAs from 20 to 26 carbons in length (e.g. C20:1, C20, C22:1, C22, C24:1, C24, C26) (Ref.4, Ref.5,. Has no activity with polyunsaturated C18:2 and C18:3 or with acyl-CoAs having 22 carbons or longer chain length. (506 aa)
FATAOleoyl-acyl carrier protein thioesterase 1, chloroplastic; Plays an essential role in chain termination during de novo fatty acid synthesis. Possesses high thioesterase activity for oleoyl- ACP versus other acyl-ACPs. Substrate preference is 18:1 > 18:0 > 16:1. (362 aa)
KAS3-oxoacyl-[acyl-carrier-protein] synthase, mitochondrial; Catalyzes all the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Able to elongate saturated acyl chains from 4 to at least 16 carbons. Uses malonyl-CoA but not acetyl-CoA as primer substrate. When expressed in a heterologous system, reveals a bimodal distribution of products, with peaks at C8 and C14-C16. The major product of the reaction (octanoyl-ACP) is required for the lipoylation of essential mitochondrial proteins. (461 aa)
LACS7Long chain acyl-CoA synthetase 7, peroxisomal; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate, linoleate and eicosenoate. Displays redundant function with LACS7 into the seed development process (By similarity). (700 aa)
LACS6Long chain acyl-CoA synthetase 6, peroxisomal; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate, linoleate and eicosenoate. Might play a regulatory role both in fatty acid import into glyoxysomes and in fatty acid beta-oxidation. Displays redundant function with LACS7 into the seed development process. (701 aa)
AAE15Long-chain-fatty-acid--[acyl-carrier-protein] ligase AEE15, chloroplastic; Probably involved in the activation of fatty acids to acyl- carrier-protein prior to fatty acid elongation in plastids. Acts on medium- to long-chain fatty acids. (727 aa)
ADS3Palmitoyl-monogalactosyldiacylglycerol delta-7 desaturase, chloroplastic; Fatty acid desaturase involved in the first desaturation step leading to the formation of hexadeca 7,10,13-trienoic acid (16:3(7Z,10Z,13Z)), the major functional components of thylakoid membranes. Required for chloroplast biogenesis at low temperature. Also indirectly involved in the production of the oxylipin dinor-oxo-phyto- dienoic acid implicated in wound signaling. (371 aa)
LACS3Long chain acyl-CoA synthetase 3; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate; Belongs to the ATP-dependent AMP-binding enzyme family. (665 aa)
LACS9Long chain acyl-CoA synthetase 9, chloroplastic; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate. (691 aa)
S-ACP-DES3Stearoyl-[acyl-carrier-protein] 9-desaturase 3, chloroplastic; Converts stearoyl-ACP to oleoyl-ACP by introduction of a cis double bond between carbons 9 and 10 of the acyl chain. Also able to convert palmitoyl-ACP to palmitoleoyl-ACP at the C9 position. Exhibits delta-9 palmitoyl-[acyl-carrier-protein] desaturase (PAD) activity. Involved in omega-7 monounsaturated fatty acid biosynthesis, especially in the endosperm oil. (401 aa)
AAE16Probable acyl-activating enzyme 16, chloroplastic; May be involved in the activation of fatty acids to acyl- carrier-protein; Belongs to the ATP-dependent AMP-binding enzyme family. (722 aa)
LACS8Long chain acyl-CoA synthetase 8; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate; Belongs to the ATP-dependent AMP-binding enzyme family. (720 aa)
FATBPalmitoyl-acyl carrier protein thioesterase, chloroplastic; Plays an essential role in chain termination during de novo fatty acid synthesis. Possesses high thioesterase activity for palmitoyl-ACP versus other acyl-ACPs. Substrate preference is 16:0 > 18:1 > 18:0 > 16:1. Plays an essential role in the supply of saturated fatty acids necessary for plant growth and seed development. Contributes to 16:0 production particularly in flowers. May be involved in the synthesis of long chain fatty acid. (412 aa)
MOD1Enoyl-[acyl-carrier-protein] reductase [NADH], chloroplastic; Catalyzes the NAD-dependent reduction of a carbon-carbon double bond in an enoyl moiety that is covalently linked to an acyl carrier protein (ACP). Catalyzes the last reduction step in the de novo synthesis cycle of fatty acids. Involved in the elongation cycle of fatty acids which are used in lipid metabolism. Required for normal plant growth. (390 aa)
FATA2Oleoyl-acyl carrier protein thioesterase 2, chloroplastic; Plays an essential role in chain termination during de novo fatty acid synthesis. Possesses high thioesterase activity for oleoyl- ACP versus other acyl-ACPs. (367 aa)
FAD4Fatty acid desaturase 4, chloroplastic; Fatty acid desaturase involved in the production of chloroplast-specific phosphatidylglycerol molecular species containing 16:1(3E). Catalyzes the formation of a trans double bond introduced close to the carboxyl group of palmitic acid, which is specifically esterified to the sn-2 glyceryl carbon of phosphatidylglycerol. (323 aa)
LACS4Long chain acyl-CoA synthetase 4; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate; Belongs to the ATP-dependent AMP-binding enzyme family. (666 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (22%) [HD]