STRINGSTRING
NPY5 NPY5 PID2 PID2 NPY1 NPY1 WAG1 WAG1 NPY3 NPY3 YUC4 YUC4 WAG2 WAG2 YUC1 YUC1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
NPY5BTB/POZ domain-containing protein NPY5; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). May play an essential role in auxin-mediated organogenesis and in root gravitropic responses; Belongs to the NPH3 family. (580 aa)
PID2Protein kinase PINOID 2; Serine/threonine-protein kinase involved in the regulation of auxin signaling. Plays a minor role in the regulation of cellular auxin efflux and cotyledon organogenesis. (525 aa)
NPY1BTB/POZ domain-containing protein NPY1; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Coregulates with PID the auxin-mediated plant organogenesis. Regulates cotyledon development through control of PIN1 polarity. May play an essential role in root gravitropic responses. (571 aa)
WAG1Serine/threonine-protein kinase WAG1; Serine/threonine-protein kinase involved in the regulation of auxin signaling. Acts as a positive regulator of cellular auxin efflux and regulates organ development by enhancing PIN-mediated polar auxin transport. Phosphorylates conserved serine residues in the PIN auxin efflux carriers. Phosphorylation of PIN proteins is required and sufficient for apical-basal PIN polarity that enables directional intercellular auxin fluxes, which mediate differential growth, tissue patterning and organogenesis. Acts as suppressors of root waving. (476 aa)
NPY3BTB/POZ domain-containing protein NPY3; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). May play an essential role in auxin-mediated organogenesis and in root gravitropic responses. (579 aa)
YUC4Probable indole-3-pyruvate monooxygenase YUCCA4; Involved in auxin biosynthesis. Both isoforms are catalitically active. Involved during embryogenesis and seedling development. Required for the formation of floral organs and vascular tissues. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in shoots. (411 aa)
WAG2Serine/threonine-protein kinase WAG2; Serine/threonine-protein kinase involved in the regulation of auxin signaling. Acts as a positive regulator of cellular auxin efflux and regulates organ development by enhancing PIN-mediated polar auxin transport. Phosphorylates conserved serine residues in the PIN auxin efflux carriers. Phosphorylation of PIN proteins is required and sufficient for apical-basal PIN polarity that enables directional intercellular auxin fluxes, which mediate differential growth, tissue patterning and organogenesis. Acts as suppressors of root waving. (480 aa)
YUC1Probable indole-3-pyruvate monooxygenase YUCCA1; Involved in auxin biosynthesis, but not in the tryptamine or the CYP79B2/B3 branches. Catalyzes in vitro the N-oxidation of tryptamine to form N-hydroxyl tryptamine. Involved during embryogenesis and seedling development. Required for the formation of floral organs and vascular tissues. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in shoots. (414 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (12%) [HD]