STRINGSTRING
RANBP1C RANBP1C XPO1B XPO1B HDA19 HDA19 GL2 GL2 COG6 COG6 HDA15 HDA15 HDA18 HDA18 HDA14 HDA14 HDA2 HDA2 HDA6 HDA6 HDA17 HDA17 HDA10 HDA10 WER WER XPO1 XPO1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
RANBP1CRan-binding protein 1 homolog c. (219 aa)
XPO1BProtein EXPORTIN 1B; Receptor for the leucine-rich nuclear export signal (NES). Binds cooperatively to the NES on its target protein and to the small GTPase Ran in its active GTP-bound form (By similarity). Required for the maternal-to-embryonic transition and during gametophyte development ; Belongs to the exportin family. (1076 aa)
HDA19Histone deacetylase 19; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. HDA19 is involved in jasmonic acid and ethylene signaling of pathogen response. Part of a repressor complex including APETALA2 (AP2) and TOPLESS (TPL) that control the expression domains of numerous flora [...] (501 aa)
GL2Homeobox-leucine zipper protein GLABRA 2; Probable transcription factor required for correct morphological development and maturation of trichomes as well as for normal development of seed coat mucilage. Regulates the frequency of trichome initiation and determines trichome spacing. (747 aa)
COG6Conserved oligomeric Golgi complex subunit 6; Required for normal Golgi function. (680 aa)
HDA15Histone deacetylase 15; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). (552 aa)
HDA18Histone deacetylase 18; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Required for appropriate cellular patterning in the root epidermis. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). (682 aa)
HDA14Histone deacetylase 14; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). (423 aa)
HDA2Histone deacetylase 2; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). (387 aa)
HDA6Histone deacetylase 6; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Might remove acetyl residues only from specific targets, such as rDNA repeats or complex transgenes. Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Required for rRNA gene silencing in nucleolar dominance. Plays a role in transgene silencing, but this e [...] (471 aa)
HDA17Histone deacetylase 17; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). (158 aa)
HDA10Putative histone deacetylase 10; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). (142 aa)
WERTranscription factor WER; Transcription activator, when associated with BHLH2/EGL3/MYC146 or BHLH12/MYC1. Involved in epidermal cell fate specification in roots and hypocotyl. Together with GL3 or BHLH2, promotes the formation of non-hair developing cells (atrichoblasts) et the N position in root epidermis. Regulates stomata spatial distribution in hypocotyls. Binds to the WER-binding sites (WBS) promoter regions and activates the transcription of target genes such as GL2 and of CPC. (203 aa)
XPO1Protein EXPORTIN 1A; Receptor for the leucine-rich nuclear export signal (NES). Binds cooperatively to the NES on its target protein and to the small GTPase Ran in its active GTP-bound form. Required for the maternal-to-embryonic transition and during gametophyte development. Involved in heat- induced oxidative stress basal resistance. Belongs to the exportin family. (1075 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (20%) [HD]