STRINGSTRING
ND1 ND1 atp6 atp6 nad1 nad1 nad5 nad5 nad2 nad2 ccmB ccmB nad6 nad6 nad4 nad4 nad3 nad3 ccmC ccmC nad7 nad7 nad4L nad4L atp4 atp4 ABCI5 ABCI5 ND2 ND2 ND5 ND5 ATP9 ATP9 ND6 ND6 COX1 COX1 CCMC CCMC ND3 ND3 CCMB CCMB NAD7 NAD7 ND4 ND4 ND4L ND4L atp9 atp9 TH1 TH1 RCD1 RCD1 RPS1 RPS1 OTP51 OTP51
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ND1NADH-ubiquinone oxidoreductase chain 1; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (325 aa)
atp6ATP synthase subunit a. (385 aa)
nad1NADH-ubiquinone oxidoreductase chain 1; Belongs to the complex I subunit 1 family. (325 aa)
nad5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (669 aa)
nad2NADH dehydrogenase subunit 2. (488 aa)
ccmBCytochrome c biogenesis B. (206 aa)
nad6NADH-ubiquinone oxidoreductase chain 6; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (205 aa)
nad4NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (495 aa)
nad3NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (118 aa)
ccmCPutative cytochrome c biosynthesis ccmC-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes. Belongs to the CcmC/CycZ/HelC family. (256 aa)
nad7NADH dehydrogenase subunit 7; Belongs to the complex I 49 kDa subunit family. (394 aa)
nad4LNADH dehydrogenase subunit 4L. (100 aa)
atp4ATPase subunit 4. (192 aa)
ABCI5Putative cytochrome c biosynthesis ccmC-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes. Belongs to the CcmC/CycZ/HelC family. (256 aa)
ND2NADH-ubiquinone oxidoreductase chain 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (499 aa)
ND5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (669 aa)
ATP9ATP synthase subunit 9, mitochondrial; This protein is one of the chains of the nonenzymatic membrane component (F0) of mitochondrial ATPase. (85 aa)
ND6NADH-ubiquinone oxidoreductase chain 6; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (205 aa)
COX1Cytochrome c oxidase subunit 1; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and t [...] (527 aa)
CCMCPutative cytochrome c biosynthesis ccmC-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes; Belongs to the CcmC/CycZ/HelC family. (232 aa)
ND3NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (119 aa)
CCMBPutative cytochrome c biogenesis ccmB-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes. (206 aa)
NAD7NADH dehydrogenase [ubiquinone] iron-sulfur protein 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). Component of the iron-sulfur (IP) fragment of the enzyme. (394 aa)
ND4NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (495 aa)
ND4LNADH-ubiquinone oxidoreductase chain 4L; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (100 aa)
atp9ATP synthase subunit 9, mitochondrial; Belongs to the ATPase C chain family. (85 aa)
TH1Thiamine biosynthetic bifunctional enzyme TH1, chloroplastic; Essential for thiamine biosynthesis. Bifunctional enzyme that catalyzes the phosphorylation of hydroxymethylpyrimidine phosphate (HMP-P) to HMP-PP and condenses 4-methyl-5-(beta-hydroxyethyl)thiazole monophosphate (THZ-P) and 2-methyl-4-amino-5-hydroxymethyl pyrimidine pyrophosphate (HMP-PP) to form thiamine monophosphate (TMP). (522 aa)
RCD1Inactive poly [ADP-ribose] polymerase RCD1; Inactive ADP-ribosyltransferase that functions with SRO1 to regulate oxidative stress, hormonal and developmental responses. Required for embryogenesis, vegetative and reproductive development, and abiotic stress responses. May regulate several stress-responsive genes. Seems to play a larger developmental role than SRO1. Does not bind NAD in vitro. (589 aa)
RPS130S ribosomal protein S1, chloroplastic; Required for optimal plastid performance in terms of photosynthesis and growth. Required for the translation of plastid mRNAs. Involved in cellular heat stress response and required for heat tolerance. Required for transcriptional activation of HSFA2 and its target genes in response to heat stress. Plays a critical role in biosynthesis of thylakoid membrane proteins encoded by chloroplast genes. (416 aa)
OTP51Pentatricopeptide repeat-containing protein At2g15820, chloroplastic; Promotes the splicing of group II introns in chloroplasts. Required for the splicing of intron 2 of plastid ycf3 transcripts, a factor required for the assembly of photosystem I (PSI). Involved in the splicing of several other group-IIa introns. May be involved in the splicing of precursor forms of trnL, trnG, trnI, and trnA. Required for the assembly of PSI and PSII. (849 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (22%) [HD]