node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
CNX1 | CRT2 | P29402 | Q38858 | Calnexin homolog 1; Calcium-binding protein that interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins (By similarity); Belongs to the calreticulin family. | Calreticulin-2; Molecular calcium-binding chaperone promoting folding, oligomeric assembly and quality control in the ER via the calreticulin/calnexin cycle. This lectin may interact transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER (By similarity). | 0.956 |
CNX1 | CRT3 | P29402 | O04153 | Calnexin homolog 1; Calcium-binding protein that interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins (By similarity); Belongs to the calreticulin family. | Calreticulin-3; Molecular calcium-binding chaperone promoting folding, oligomeric assembly and quality control in the ER via the calreticulin/calnexin cycle. This lectin may interact transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER. Required for elongation factor Tu receptor (EFR) accumulation and for EFR, but not flagellin-sensing 2 (FLS2) signaling. | 0.933 |
CNX1 | EFR | P29402 | C0LGT6 | Calnexin homolog 1; Calcium-binding protein that interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins (By similarity); Belongs to the calreticulin family. | LRR receptor-like serine/threonine-protein kinase EFR; Constitutes the pattern-recognition receptor (PPR) that determines the specific perception of elongation factor Tu (EF-Tu), a potent elicitor of the defense response to pathogen-associated molecular patterns (PAMPs). Reduces transformation by Rhizobium radiobacter probably by inducing plant defense during the interaction. Binding to the effector AvrPto1 from P.syringae blocks the downstream plant immune response while interaction with hopD2 decreases the phosphorylation level of EFR upon elf18 treatment. Specific endoplasmic reticu [...] | 0.540 |
CNX1 | HSP70-4 | P29402 | Q9LHA8 | Calnexin homolog 1; Calcium-binding protein that interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins (By similarity); Belongs to the calreticulin family. | Heat shock 70 kDa protein 4; In cooperation with other chaperones, Hsp70s are key components that facilitate folding of de novo synthesized proteins, assist translocation of precursor proteins into organelles, and are responsible for degradation of damaged protein under stress conditions (Probable). ATP-dependent molecular chaperone that assists folding of unfolded or misfolded proteins under stress conditions. Mediates plastid precursor degradation to prevent cytosolic precursor accumulation, together with the E3 ubiquitin-protein ligase CHIP. Recognizes specific sequence motifs in tr [...] | 0.873 |
CNX1 | T2I1_50 | P29402 | Q38798 | Calnexin homolog 1; Calcium-binding protein that interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins (By similarity); Belongs to the calreticulin family. | Calnexin homolog 2; Calcium-binding protein that interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins (By similarity). | 0.939 |
CRT2 | CNX1 | Q38858 | P29402 | Calreticulin-2; Molecular calcium-binding chaperone promoting folding, oligomeric assembly and quality control in the ER via the calreticulin/calnexin cycle. This lectin may interact transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER (By similarity). | Calnexin homolog 1; Calcium-binding protein that interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins (By similarity); Belongs to the calreticulin family. | 0.956 |
CRT2 | CRT3 | Q38858 | O04153 | Calreticulin-2; Molecular calcium-binding chaperone promoting folding, oligomeric assembly and quality control in the ER via the calreticulin/calnexin cycle. This lectin may interact transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER (By similarity). | Calreticulin-3; Molecular calcium-binding chaperone promoting folding, oligomeric assembly and quality control in the ER via the calreticulin/calnexin cycle. This lectin may interact transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER. Required for elongation factor Tu receptor (EFR) accumulation and for EFR, but not flagellin-sensing 2 (FLS2) signaling. | 0.919 |
CRT2 | EFR | Q38858 | C0LGT6 | Calreticulin-2; Molecular calcium-binding chaperone promoting folding, oligomeric assembly and quality control in the ER via the calreticulin/calnexin cycle. This lectin may interact transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER (By similarity). | LRR receptor-like serine/threonine-protein kinase EFR; Constitutes the pattern-recognition receptor (PPR) that determines the specific perception of elongation factor Tu (EF-Tu), a potent elicitor of the defense response to pathogen-associated molecular patterns (PAMPs). Reduces transformation by Rhizobium radiobacter probably by inducing plant defense during the interaction. Binding to the effector AvrPto1 from P.syringae blocks the downstream plant immune response while interaction with hopD2 decreases the phosphorylation level of EFR upon elf18 treatment. Specific endoplasmic reticu [...] | 0.650 |
CRT2 | HSP70-4 | Q38858 | Q9LHA8 | Calreticulin-2; Molecular calcium-binding chaperone promoting folding, oligomeric assembly and quality control in the ER via the calreticulin/calnexin cycle. This lectin may interact transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER (By similarity). | Heat shock 70 kDa protein 4; In cooperation with other chaperones, Hsp70s are key components that facilitate folding of de novo synthesized proteins, assist translocation of precursor proteins into organelles, and are responsible for degradation of damaged protein under stress conditions (Probable). ATP-dependent molecular chaperone that assists folding of unfolded or misfolded proteins under stress conditions. Mediates plastid precursor degradation to prevent cytosolic precursor accumulation, together with the E3 ubiquitin-protein ligase CHIP. Recognizes specific sequence motifs in tr [...] | 0.842 |
CRT2 | T2I1_50 | Q38858 | Q38798 | Calreticulin-2; Molecular calcium-binding chaperone promoting folding, oligomeric assembly and quality control in the ER via the calreticulin/calnexin cycle. This lectin may interact transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER (By similarity). | Calnexin homolog 2; Calcium-binding protein that interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins (By similarity). | 0.951 |
CRT3 | CNX1 | O04153 | P29402 | Calreticulin-3; Molecular calcium-binding chaperone promoting folding, oligomeric assembly and quality control in the ER via the calreticulin/calnexin cycle. This lectin may interact transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER. Required for elongation factor Tu receptor (EFR) accumulation and for EFR, but not flagellin-sensing 2 (FLS2) signaling. | Calnexin homolog 1; Calcium-binding protein that interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins (By similarity); Belongs to the calreticulin family. | 0.933 |
CRT3 | CRT2 | O04153 | Q38858 | Calreticulin-3; Molecular calcium-binding chaperone promoting folding, oligomeric assembly and quality control in the ER via the calreticulin/calnexin cycle. This lectin may interact transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER. Required for elongation factor Tu receptor (EFR) accumulation and for EFR, but not flagellin-sensing 2 (FLS2) signaling. | Calreticulin-2; Molecular calcium-binding chaperone promoting folding, oligomeric assembly and quality control in the ER via the calreticulin/calnexin cycle. This lectin may interact transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER (By similarity). | 0.919 |
CRT3 | EFR | O04153 | C0LGT6 | Calreticulin-3; Molecular calcium-binding chaperone promoting folding, oligomeric assembly and quality control in the ER via the calreticulin/calnexin cycle. This lectin may interact transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER. Required for elongation factor Tu receptor (EFR) accumulation and for EFR, but not flagellin-sensing 2 (FLS2) signaling. | LRR receptor-like serine/threonine-protein kinase EFR; Constitutes the pattern-recognition receptor (PPR) that determines the specific perception of elongation factor Tu (EF-Tu), a potent elicitor of the defense response to pathogen-associated molecular patterns (PAMPs). Reduces transformation by Rhizobium radiobacter probably by inducing plant defense during the interaction. Binding to the effector AvrPto1 from P.syringae blocks the downstream plant immune response while interaction with hopD2 decreases the phosphorylation level of EFR upon elf18 treatment. Specific endoplasmic reticu [...] | 0.799 |
CRT3 | HSP70-4 | O04153 | Q9LHA8 | Calreticulin-3; Molecular calcium-binding chaperone promoting folding, oligomeric assembly and quality control in the ER via the calreticulin/calnexin cycle. This lectin may interact transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER. Required for elongation factor Tu receptor (EFR) accumulation and for EFR, but not flagellin-sensing 2 (FLS2) signaling. | Heat shock 70 kDa protein 4; In cooperation with other chaperones, Hsp70s are key components that facilitate folding of de novo synthesized proteins, assist translocation of precursor proteins into organelles, and are responsible for degradation of damaged protein under stress conditions (Probable). ATP-dependent molecular chaperone that assists folding of unfolded or misfolded proteins under stress conditions. Mediates plastid precursor degradation to prevent cytosolic precursor accumulation, together with the E3 ubiquitin-protein ligase CHIP. Recognizes specific sequence motifs in tr [...] | 0.841 |
CRT3 | T2I1_50 | O04153 | Q38798 | Calreticulin-3; Molecular calcium-binding chaperone promoting folding, oligomeric assembly and quality control in the ER via the calreticulin/calnexin cycle. This lectin may interact transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER. Required for elongation factor Tu receptor (EFR) accumulation and for EFR, but not flagellin-sensing 2 (FLS2) signaling. | Calnexin homolog 2; Calcium-binding protein that interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins (By similarity). | 0.929 |
EFR | CNX1 | C0LGT6 | P29402 | LRR receptor-like serine/threonine-protein kinase EFR; Constitutes the pattern-recognition receptor (PPR) that determines the specific perception of elongation factor Tu (EF-Tu), a potent elicitor of the defense response to pathogen-associated molecular patterns (PAMPs). Reduces transformation by Rhizobium radiobacter probably by inducing plant defense during the interaction. Binding to the effector AvrPto1 from P.syringae blocks the downstream plant immune response while interaction with hopD2 decreases the phosphorylation level of EFR upon elf18 treatment. Specific endoplasmic reticu [...] | Calnexin homolog 1; Calcium-binding protein that interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins (By similarity); Belongs to the calreticulin family. | 0.540 |
EFR | CRT2 | C0LGT6 | Q38858 | LRR receptor-like serine/threonine-protein kinase EFR; Constitutes the pattern-recognition receptor (PPR) that determines the specific perception of elongation factor Tu (EF-Tu), a potent elicitor of the defense response to pathogen-associated molecular patterns (PAMPs). Reduces transformation by Rhizobium radiobacter probably by inducing plant defense during the interaction. Binding to the effector AvrPto1 from P.syringae blocks the downstream plant immune response while interaction with hopD2 decreases the phosphorylation level of EFR upon elf18 treatment. Specific endoplasmic reticu [...] | Calreticulin-2; Molecular calcium-binding chaperone promoting folding, oligomeric assembly and quality control in the ER via the calreticulin/calnexin cycle. This lectin may interact transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER (By similarity). | 0.650 |
EFR | CRT3 | C0LGT6 | O04153 | LRR receptor-like serine/threonine-protein kinase EFR; Constitutes the pattern-recognition receptor (PPR) that determines the specific perception of elongation factor Tu (EF-Tu), a potent elicitor of the defense response to pathogen-associated molecular patterns (PAMPs). Reduces transformation by Rhizobium radiobacter probably by inducing plant defense during the interaction. Binding to the effector AvrPto1 from P.syringae blocks the downstream plant immune response while interaction with hopD2 decreases the phosphorylation level of EFR upon elf18 treatment. Specific endoplasmic reticu [...] | Calreticulin-3; Molecular calcium-binding chaperone promoting folding, oligomeric assembly and quality control in the ER via the calreticulin/calnexin cycle. This lectin may interact transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER. Required for elongation factor Tu receptor (EFR) accumulation and for EFR, but not flagellin-sensing 2 (FLS2) signaling. | 0.799 |
EFR | NPR1 | C0LGT6 | P93002 | LRR receptor-like serine/threonine-protein kinase EFR; Constitutes the pattern-recognition receptor (PPR) that determines the specific perception of elongation factor Tu (EF-Tu), a potent elicitor of the defense response to pathogen-associated molecular patterns (PAMPs). Reduces transformation by Rhizobium radiobacter probably by inducing plant defense during the interaction. Binding to the effector AvrPto1 from P.syringae blocks the downstream plant immune response while interaction with hopD2 decreases the phosphorylation level of EFR upon elf18 treatment. Specific endoplasmic reticu [...] | Regulatory protein NPR1; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Key positive regulator of the SA-dependent signaling pathway that negatively regulates JA-dependent signaling pathway. Mediates the binding of TGA factors to the as-1 motif found in the pathogenesis-related PR-1 gene, leading to the transcriptional regulation of the gene defense. Controls the onset of systemic acquired resistance (SAR). Upon SAR induction, [...] | 0.760 |
EFR | RAR1 | C0LGT6 | Q9SE33 | LRR receptor-like serine/threonine-protein kinase EFR; Constitutes the pattern-recognition receptor (PPR) that determines the specific perception of elongation factor Tu (EF-Tu), a potent elicitor of the defense response to pathogen-associated molecular patterns (PAMPs). Reduces transformation by Rhizobium radiobacter probably by inducing plant defense during the interaction. Binding to the effector AvrPto1 from P.syringae blocks the downstream plant immune response while interaction with hopD2 decreases the phosphorylation level of EFR upon elf18 treatment. Specific endoplasmic reticu [...] | Cysteine and histidine-rich domain-containing protein RAR1; Required specifically for plant innate immunity. Is essential for resistance conferred by multiple R genes recognizing different bacterial and oomycete pathogen isolates like avirulent P.syringae or H.parasitica (downy mildew). Contributes additively with SGT1B to RPP5- dependent resistance. Functions as positive regulator of RPS5 accumulation by assisting its stabilization. May function as co- chaperone of HSP90-2 to positively regulate the steady-state accumulation of RPM1 and protect it from SGT1-mediated degradation. Acts [...] | 0.542 |