STRINGSTRING
F28M20.240 F28M20.240 K19M22.8 K19M22.8 SNC1 SNC1 RRS1 RRS1 PR1-2 PR1-2 NPR1 NPR1 PR1 PR1 RPM1 RPM1 PER50 PER50 SAG101 SAG101 RPP1A RPP1A RPP8 RPP8 BAK1 BAK1 NUP88 NUP88 TAO1 TAO1 GAI GAI PAD4 PAD4 ICS1 ICS1 RAR1 RAR1 TIR TIR EDS1 EDS1 SNI1 SNI1 PRB1 PRB1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
F28M20.240Nucleoporin. (2730 aa)
K19M22.8LRR protein. (1089 aa)
SNC1Protein SUPPRESSOR OF npr1-1, CONSTITUTIVE 1; Disease resistance protein of the TIR-NB-LRR-type. Part of the RPP5 locus that contains a cluster of several paralogous disease resistance (R) genes. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth. Probably acts as a NAD(+) hydrolase (NADase): in response to activation, catalyzes cleavage of NAD(+) into ADP-D- ribose (ADPR) an [...] (1437 aa)
RRS1Disease resistance protein RRS1; Transcription factor. Interacts specifically with the W box (5'-(T)TGAC[CT]-3'), a frequently occurring elicitor-responsive cis- acting element. Acts also as a disease resistance protein involved in resistance to fungal and bacterial pathogens, including R.solanacearum, P.syringae pv. tomato and C.higginsianum. Heterodimerization with RPS4 is required to form a functional complex to recognize AvrRps4 and PopP2. Contributes to temperature-conditioned RPS4 auto- immunity. (1288 aa)
PR1-2Pathogenesis-related protein 1; Partially responsible for acquired pathogen resistance. (161 aa)
NPR1Regulatory protein NPR1; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Key positive regulator of the SA-dependent signaling pathway that negatively regulates JA-dependent signaling pathway. Mediates the binding of TGA factors to the as-1 motif found in the pathogenesis-related PR-1 gene, leading to the transcriptional regulation of the gene defense. Controls the onset of systemic acquired resistance (SAR). Upon SAR induction, [...] (593 aa)
PR1Putative pathogenesis-related protein 1, 18.9K; Belongs to the CRISP family. (166 aa)
RPM1Disease resistance protein RPM1; Disease resistance (R) protein that specifically recognizes the AvrRpm1 type III effector avirulence protein from Pseudomonas syringae. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth. Acts via its interaction with RIN4, and probably triggers the plant resistance when RIN4 is phosphorylated by AvrRpm1. It is then degraded at the onset of th [...] (926 aa)
PER50Peroxidase 50; Removal of H(2)O(2), oxidation of toxic reductants, biosynthesis and degradation of lignin, suberization, auxin catabolism, response to environmental stresses such as wounding, pathogen attack and oxidative stress. These functions might be dependent on each isozyme/isoform in each plant tissue. (329 aa)
SAG101Senescence-associated carboxylesterase 101; Acyl hydrolase that triggers the leaf senescence onset. Can use triolein as substrate to produce oleic acids. (537 aa)
RPP1A60S acidic ribosomal protein P1-1; Plays an important role in the elongation step of protein synthesis. (112 aa)
RPP8Disease resistance protein RPP8; Disease resistance protein. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth. The interaction with TIP (TCV-interacting protein) may be essential for the recognition of the avirulence proteins, and the triggering of the defense response. Triggers resistance to turnip crinkle virus (TCV) via a SAG101-dependent pathway. (908 aa)
BAK1BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1; Dual specificity kinase acting on both serine/threonine- and tyrosine-containing substrates. Controls the expression of genes associated with innate immunity in the absence of pathogens or elicitors. Involved in brassinosteroid (BR) signal transduction. Phosphorylates BRI1. May be involved in changing the equilibrium between plasma membrane-located BRI1 homodimers and endocytosed BRI1- BAK1 heterodimers. Interaction with MSBP1 stimulates the endocytosis of BAK1 and suppresses brassinosteroid signaling. Acts in pathogen- associ [...] (615 aa)
NUP88Nuclear pore complex protein NUP88; Involved in the regulation of exportin-mediated nuclear protein export. Required for resistance mediated by multiple R proteins and for the appropriate nuclear accumulation of SNC1 and of the downstream defense signaling components EDS1 and NPR1. Not involved in salt tolerance, ethylene and auxin responses, but required for systemic acquired resistance. (810 aa)
TAO1Disease resistance protein TAO1; TIR-NB-LRR receptor-like protein that contributes to disease resistance induced by the Pseudomonas syringae type III effector AvrB. Acts additively with RPM1 to generate a full disease resistance response to P.syringae expressing this type III effector. (1187 aa)
GAIDELLA protein GAI; Transcriptional regulator that acts as a repressor of the gibberellin (GA) signaling pathway. Transcription coactivator of the zinc finger transcription factors GAF1/IDD2 and ENY/IDD1 in regulation of gibberellin homeostasis and signaling. No effect of the BOI proteins on its stability. Probably acts by participating in large multiprotein complexes that repress transcription of GA-inducible genes. Positively regulates XERICO expression. In contrast to RGA, it is less sensitive to GA. Its activity is probably regulated by other phytohormones such as auxin and ethylene [...] (533 aa)
PAD4Lipase-like PAD4; Probable lipase required downstream of MPK4 for accumulation of the plant defense-potentiating molecule, salicylic acid, thus contributing to the plant innate immunity against invasive biotrophic pathogens and to defense mechanisms upon recognition of microbe- associated molecular patterns (MAMPs). Participates in the regulation of various molecular and physiological processes that influence fitness. Together with SG101, required for programmed cell death (PCD) triggered by NBS-LRR resistance proteins (e.g. RPS4, RPW8.1 and RPW8.2) in response to the fungal toxin fumo [...] (541 aa)
ICS1Isochorismate synthase 1, chloroplastic; Involved in the synthesis of salicylic acid (SA) required for both local and systemic acquired resistance (LAR and SAR) while SA synthesized through the phenylalanine ammonium lyase (PAL) pathway seems to potentiate plant cell death. Also involved in phylloquinone (vitamin K1) synthesis. Has no isochorismate pyruvate lyase (IPL) activity. (569 aa)
RAR1Cysteine and histidine-rich domain-containing protein RAR1; Required specifically for plant innate immunity. Is essential for resistance conferred by multiple R genes recognizing different bacterial and oomycete pathogen isolates like avirulent P.syringae or H.parasitica (downy mildew). Contributes additively with SGT1B to RPP5- dependent resistance. Functions as positive regulator of RPS5 accumulation by assisting its stabilization. May function as co- chaperone of HSP90-2 to positively regulate the steady-state accumulation of RPM1 and protect it from SGT1-mediated degradation. Acts [...] (226 aa)
TIRToll/interleukin-1 receptor-like protein; Disease resistance protein. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via a direct or indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth (By similarity). (176 aa)
EDS1Protein EDS1; Positive regulator of basal resistance and of effector- triggered immunity specifically mediated by TIR-NB-LRR (TNL) resistance proteins. Disruption by bacterial effector of EDS1-TIR-NB-LRR resistance protein interactions constitutes the first step in resistance activation. Acts redundantly with salicylic acid to regulate resistance gene-mediated signaling. Triggers early plant defenses and hypersensitive response independently of PAD4, and then recruits PAD4 to potentiate plant defenses through the accumulation of salicylic acid. Nuclear localization is essential for bas [...] (623 aa)
SNI1Negative regulator of systemic acquired resistance SNI1; Component of the SMC5-SMC6 complex, a complex involved in repair of DNA double-strand breaks by homologous recombination. Transcription repressor that prevents expression of pathogenesis-related genes (PR) via histone modifications and binding negative cis-acting elements at their promoters. Negative regulator of hypersensitive response (HR) and systemic acquired resistance (SAR) required to dampen the basal expression of pathogenesis related (PR) genes. Functions synergistically with NTL9/CBNAC as negative regulator of pathogen- [...] (432 aa)
PRB1Pathogenesis-related protein 1; Probably involved in the defense reaction of plants against pathogens. (161 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: medium (44%) [HD]