Your Input: | |||||
A0A1P8B502 | LRR receptor-like protein. (141 aa) | ||||
ERL1 | LRR receptor-like serine/threonine-protein kinase ERL1; Receptor kinase that regulates inflorescence architecture and organ shape as well as stomatal patterning, including density and clustering, together with ER and ERL2. Redundantly involved with ER in procambial development regulation. Forms a functional ligand-receptor pair with EPF1 (AC Q8S8I4). Forms a constitutive complex with TMM involved in the recognition of the stomatal regulatory peptides EPF1, EPF2 and EPFL9/STOMAGEN. Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. (966 aa) | ||||
PYR1 | Abscisic acid receptor PYR1; Receptor for abscisic acid (ABA) required for ABA-mediated responses such as stomatal closure and germination inhibition. Inhibits the activity of group-A protein phosphatases type 2C (PP2Cs) when activated by ABA. Can be activated by both (-)-ABA and (+)-ABA. Promotes drought tolerance. (191 aa) | ||||
MKK4 | Mitogen-activated protein kinase kinase 4; Involved in the second phase of hydrogen peroxide generation during hypersensitive response-like cell death. Involved in the innate immune MAP kinase signaling cascade (MEKK1, MKK4/MKK5 and MPK3/MPK6) downstream of bacterial flagellin receptor FLS2. Activates by phosphorylation the downstream MPK3 and MPK6. YDA-MKK4/MKK5-MPK3/MPK6 module regulates stomatal cell fate before the guard mother cell (GMC) is specified. This MAPK cascade also functions downstream of the ER receptor in regulating coordinated local cell proliferation, which shapes the [...] (366 aa) | ||||
ARAC7 | Rac-like GTP-binding protein ARAC7; Acts as a negative regulator of abscisic acid (ABA) responses. (209 aa) | ||||
EPFL6 | EPIDERMAL PATTERNING FACTOR-like protein 6; Acts primarily as positive regulator of inflorescence growth. Endodermal expression is sufficient for proper inflorescence architecture. Redundantly involved with EPFL4 in procambial development regulation. Acts also as tissue-specific regulator of epidermal pattern. Controls stomatal patterning by repressing stomatal production. TMM (AC Q9SSD1) functions to dampen or block CHAL signaling. Not processed by SDD1 (AC O64495). Acts as growth-regulatory ligand for ERECTA family receptors. Belongs to the plant cysteine rich small secretory peptide [...] (156 aa) | ||||
EPFL4 | EPIDERMAL PATTERNING FACTOR-like protein 4; Acts primarily as positive regulator of inflorescence growth. Endodermal expression is sufficient for proper inflorescence architecture. Redundantly involved with EPFL6 in procambial development regulation. Controls stomatal patterning. Mediates stomatal development inhibition. TMM (AC Q9SSD1) functions to dampen or block CLL2 signaling. Acts as growth-regulatory ligand for ERECTA family receptors. (109 aa) | ||||
ARAC4 | Rac-like GTP-binding protein ARAC4; Inactive GDP-bound Rho GTPases reside in the cytosol, are found in a complex with Rho GDP-dissociation inhibitors (Rho GDIs), and are released from the GDI protein in order to translocate to membranes upon activation (By similarity). May be involved in cell polarity control during the actin-dependent tip growth of root hairs. May regulate a WAVE complex that activates the Arp2/3 complex. (195 aa) | ||||
MPK3 | Mitogen-activated protein kinase 3; Involved in oxidative stress-mediated signaling cascade (such as ozone). Involved in the innate immune MAP kinase signaling cascade (MEKK1, MKK4/MKK5 and MPK3/MPK6) downstream of bacterial flagellin receptor FLS2. May be involved in hypersensitive response (HR)-mediated signaling cascade by modulating LIP5 phosphorylation and subsequent multivesicular bodies (MVBs) trafficking. May phosphorylate regulators of WRKY transcription factors. Mediates the phosphorylation of VIP1 and subsequent stress genes transcription in response to Agrobacterium. MKK9-M [...] (370 aa) | ||||
FAMA | Transcription factor FAMA; Transcription activator. Together with MYB88 and MYB124, ensures that stomata contain just two guard cells (GCs) by enforcing a single symmetric precursor cell division before stomatal maturity. Together with SPCH and MUTE, regulates the stomata formation. Required to promote differentiation and morphogenesis of stomatal guard cells and to halt proliferative divisions in their immediate precursors. Mediates the formation of stomata. Prevents histone H3K27me3 marks and derepresses stem cell gene expression. (414 aa) | ||||
BASL | Protein BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE; Regulates asymmetric cell division (ACD), especially in stomatal-lineage cells, probably by modulating accumulation and subcellular polarization of POLAR and SPCH. Mediates an attenuation of MAPK signaling upon polarization of POLAR and ASK7/BIN2 in stomatal lineage ground cells (SLGCs) undergoing ACD, and relieves BIN2 inhibition of SPCH in the nucleus. When phosphorylated, functions as a scaffold and recruits the MAPKKK YODA, MPK3 and MPK6 to spatially reorganize the MAPK signaling pathway at the cortex of cells undergoing ACD. C [...] (262 aa) | ||||
ERL2 | LRR receptor-like serine/threonine-protein kinase ERL2; Receptor kinase that regulates inflorescence architecture and organ shape as well as stomatal patterning, including density and clustering, together with ERL1 and ER. (967 aa) | ||||
SPCH | Transcription factor SPEECHLESS; Transcription factor acting as an integration node for stomata and brassinosteroid (BR) signaling pathways to control stomatal initiation and development. Activates transcription when in the presence of SCRM/ICE1. Functions as a dimer with SCRM or SCRM2 during stomatal initiation. Required for the initiation, the spacing and the formation of stomata, by promoting the first asymmetric cell divisions. Together with FMA and MUTE, modulates the stomata formation. Involved in the regulation of growth reduction under osmotic stress (e.g. mannitol), associated [...] (364 aa) | ||||
EPF2 | Protein EPIDERMAL PATTERNING FACTOR 2; Controls stomatal patterning. Regulates the number of cells that enter, and remain in, the stomatal lineage by inhibiting protodermal cells from adopting the meristemoid mother cell (MMC) fate in a non-cell-autonomous manner. Mediates stomatal development inhibition. MEPF2: mobile signal controlling stomatal development in a non-cell-autonomous manner. Uses ERECTA as major receptor. Inactivated by cleavage by CRSP (AC Q9LNU1). May act by competing with somatogen (AC Q9SV72) for the same receptor, TMM (AC Q9SSD1). (120 aa) | ||||
EPF1 | Protein EPIDERMAL PATTERNING FACTOR 1; Controls stomatal patterning. Regulates asymmetric cell division during guard cell differentiation. Mediates stomatal development inhibition. Not cleaved by the protease CRSP (AC Q9LNU1). MEPF1: mobile signal controlling stomatal development in a non-cell-autonomous manner. Uses ERL1 as major receptor. May act by competing with somatogen (AC Q9SV72) for the same receptor, TMM (AC Q9SSD1). Belongs to the plant cysteine rich small secretory peptide family. Epidermal patterning factor subfamily. (104 aa) | ||||
SRK2E | Serine/threonine-protein kinase SRK2E; Activator of the abscisic acid (ABA) signaling pathway that regulates numerous ABA responses, such as stomata closure in response to drought, darkness, high CO(2), plant pathogens, or decreases in atmospheric relative humidity (RH). Involved in the resistance to drought by avoiding water loss. Required for the stomata closure mediated by pathogen-associated molecular pattern (PAMPs) (e.g. flg22 and LPS) of pathogenic bacteria such as P.syringae pv. tomato (Pst) and E.coli O157:H7. As a plant defense process, stomata are closed transiently in order [...] (362 aa) | ||||
SCRM2 | Transcription factor SCREAM2; Mediates stomatal differentiation in the epidermis probably by controlling successive roles of SPCH, MUTE, and FAMA. Functions as a dimer with SPCH during stomatal initiation. (450 aa) | ||||
SCRM | Transcription factor ICE1; Transcriptional activator that regulates the cold-induced transcription of CBF/DREB1 genes. Binds specifically to the MYC recognition sites (5'-CANNTG-3') found in the CBF3/DREB1A promoter. Mediates stomatal differentiation in the epidermis probably by controlling successive roles of SPCH, MUTE, and FAMA. Functions as a dimer with SPCH during stomatal initiation. (494 aa) | ||||
EPFL5 | EPIDERMAL PATTERNING FACTOR-like protein 5; Controls stomatal patterning. Mediates differentiation of stomatal lineage cells to pavement cells and stomatal development inhibition. TMM (AC Q9SSD1) functions to dampen or block CLL1 signaling. Acts as growth-regulatory ligand for ERECTA family receptors. Promotes fruit growth and fertility. Belongs to the plant cysteine rich small secretory peptide family. Epidermal patterning factor subfamily. (107 aa) | ||||
MUTE | Transcription factor MUTE; Transcription factor. Together with FMA and SPCH, regulates the stomata formation. Required for the differentiation of stomatal guard cells, by promoting successive asymmetric cell divisions and the formation of guard mother cells. Promotes the conversion of the leaf epidermis into stomata. (202 aa) | ||||
EPFL9 | EPIDERMAL PATTERNING FACTOR-like protein 9; [Stomagen]: Positively regulates stomatal density and patterning. Acts by competing with EPF2 (AC Q8LC53) for the same receptors, ERECTA (AC Q42371) and TMM (AC Q9SSD1). Not cleaved by the protease CRSP (AC Q9LNU1). Belongs to the plant cysteine rich small secretory peptide family. Epidermal patterning factor subfamily. (102 aa) |