Your Input: | |||||
A0A1P8ARU2 | Phosphotransferase. (186 aa) | ||||
SPS4 | Probable sucrose-phosphate synthase 4; Plays a role in photosynthetic sucrose synthesis by catalyzing the rate-limiting step of sucrose biosynthesis from UDP- glucose and fructose- 6-phosphate. Involved in the regulation of carbon partitioning in the leaves of plants. May regulate the synthesis of sucrose and therefore play a major role as a limiting factor in the export of photoassimilates out of the leaf. Plays a role for sucrose availability that is essential for plant growth and fiber elongation; Belongs to the glycosyltransferase 1 family. (1050 aa) | ||||
GAPC1 | Glyceraldehyde-3-phosphate dehydrogenase GAPC1, cytosolic; Key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3- phospho-D-glyceroyl phosphate. Essential for the maintenance of cellular ATP levels and carbohydrate metabolism. Required for full fertility. Involved in response to oxidative stress by mediating plant responses to abscisic acid (ABA) and water deficits through the activation of PLDDELTA and production of phosphatidic acid (PA), a multifunctional stress signaling lipid in plants. Associates with FBA6 to [...] (338 aa) | ||||
APS1 | Glucose-1-phosphate adenylyltransferase small subunit, chloroplastic; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (520 aa) | ||||
HXK2 | Hexokinase-2; Fructose and glucose phosphorylating enzyme. May be involved in the phosphorylation of glucose during the export from mitochondrion to cytosol. Acts as sugar sensor which may regulate sugar-dependent gene repression or activation. Mediates the effects of sugar on plant growth and development independently of its catalytic activity or the sugar metabolism. May regulate the execution of program cell death in plant cells ; Belongs to the hexokinase family. (502 aa) | ||||
SUC2 | Sucrose transport protein SUC2; Responsible for the transport of sucrose into the cell, with the concomitant uptake of protons (symport system). Can also transport other glucosides such as maltose, arbutin (hydroquinone-beta-D- glucoside), salicin (2-(hydroxymethyl)phenyl-beta-D-glucoside), alpha- phenylglucoside, beta-phenylglucoside, alpha-paranitrophenylglucoside, beta-paranitrophenylglucoside, and paranitrophenyl-beta-thioglucoside. May also transport biotin. Required for apoplastic phloem sucrose loading in source tissues (e.g. leaves) in order to transport it to sink tissues (e.g [...] (512 aa) | ||||
HXK1 | Hexokinase-1; Fructose and glucose phosphorylating enzyme. May be involved in the phosphorylation of glucose during the export from mitochondrion to cytosol. Acts as sugar sensor which may regulate sugar-dependent gene repression or activation. Mediates the effects of sugar on plant growth and development independently of its catalytic activity or the sugar metabolism. May regulate the execution of program cell death in plant cells. Promotes roots and leaves growth. Belongs to the hexokinase family. (496 aa) | ||||
ATHXK4 | Hexokinase-4; Fructose and glucose phosphorylating enzyme (By similarity). May be involved in the phosphorylation of glucose during the export from mitochondrion to cytosol (By similarity). (502 aa) | ||||
GAPCP2 | Glyceraldehyde-3-phosphate dehydrogenase GAPCP2, chloroplastic; Involved in plastidial glycolytic pathway and plays a specific role in glycolytic energy production in non-green plastids and chloroplasts. Essential for breakdown of starch to form sucrose for export to non-photosynthetic tissues, and to generate primary metabolites for anabolic pathways such as fatty acid and amino acid synthesis. Plays an important role in plant development by providing substrates for the phosphorylated pathway of serine biosynthesis in roots. Plays a crucial role in pollen development. Functionally red [...] (420 aa) | ||||
PPC2 | Phosphoenolpyruvate carboxylase 2; Through the carboxylation of phosphoenolpyruvate (PEP) it forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle. (963 aa) | ||||
PPC3 | Phosphoenolpyruvate carboxylase 3; Through the carboxylation of phosphoenolpyruvate (PEP) it forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle. (968 aa) | ||||
PPC4 | Phosphoenolpyruvate carboxylase 4; Through the carboxylation of phosphoenolpyruvate (PEP) it forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle; Belongs to the PEPCase type 1 family. (1032 aa) | ||||
PGI1 | Glucose-6-phosphate isomerase 1, chloroplastic; Promotes the synthesis of starch in leaves. (613 aa) | ||||
SPS3-2 | Probable sucrose-phosphate synthase 3; Plays a role in photosynthetic sucrose synthesis by catalyzing the rate-limiting step of sucrose biosynthesis from UDP- glucose and fructose- 6-phosphate. Involved in the regulation of carbon partitioning in the leaves of plants. May regulate the synthesis of sucrose and therefore play a major role as a limiting factor in the export of photoassimilates out of the leaf. Plays a role for sucrose availability that is essential for plant growth and fiber elongation. (1062 aa) | ||||
SPS1-2 | Sucrose-phosphate synthase 1; Plays a major role in photosynthetic sucrose synthesis by catalyzing the rate-limiting step of sucrose biosynthesis from UDP- glucose and fructose- 6-phosphate. Involved in the regulation of carbon partitioning in the leaves of plants. May regulate the synthesis of sucrose and therefore play a major role as a limiting factor in the export of photoassimilates out of the leaf. Plays a role for sucrose availability that is essential for plant growth and fiber elongation. Required for nectar secretion. (1043 aa) | ||||
VTE1 | Tocopherol cyclase, chloroplastic; Involved in the synthesis of both tocopherols and tocotrienols (vitamin E), which presumably protect photosynthetic complexes from oxidative stress. Catalyzes the conversion of 2-methyl- 6-phytyl-1,4-hydroquinone and 2,3-dimethyl-5-phytyl-1,4-hydroquinone (DMPQ) to delta- and gamma-tocopherol respectively. Converts also 2,3- dimethyl-5-geranylgeranyl-1,4-hydroquinone (DMGQ) to gamma-tocotrienol. (488 aa) | ||||
NUC | Zinc finger protein NUTCRACKER; Transcription activator that binds to the DNA sequence 5'- CTTTTGTCC-3'. Regulates photoperiodic flowering by modulating sugar transport and metabolism. Regulates SUS1 and SUS4. Transcription factor that regulates tissue boundaries and asymmetric cell division. Contributes to the sequestration of 'SHORT-ROOT' to the nucleus. (466 aa) | ||||
GAPC2 | Glyceraldehyde-3-phosphate dehydrogenase GAPC2, cytosolic; Key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3- phospho-D-glyceroyl phosphate. Essential for the maintenance of cellular ATP levels and carbohydrate metabolism (By similarity). Binds DNA in vitro. (338 aa) | ||||
SPS2-2 | Probable sucrose-phosphate synthase 2; Plays a role in photosynthetic sucrose synthesis by catalyzing the rate-limiting step of sucrose biosynthesis from UDP- glucose and fructose- 6-phosphate. Involved in the regulation of carbon partitioning in the leaves of plants. May regulate the synthesis of sucrose and therefore play a major role as a limiting factor in the export of photoassimilates out of the leaf. Plays a role for sucrose availability that is essential for plant growth and fiber elongation. Required for nectar secretion. (1047 aa) | ||||
HXK3 | Hexokinase-like 1 protein; Fructose and glucose phosphorylating enzyme. Belongs to the hexokinase family. (493 aa) | ||||
MEX1 | Maltose excess protein 1, chloroplastic; Probable maltose transporter. Essential for the conversion of starch to sucrose in leaves at night, probably via the export of maltose from the chloroplast. Required for root cap cells formation. (415 aa) | ||||
HKL1 | Hexokinase-3; Fructose and glucose phosphorylating enzyme (By similarity). May be involved in the phosphorylation of glucose during the export from mitochondrion to cytosol (By similarity). (498 aa) | ||||
PPC1 | Phosphoenolpyruvate carboxylase 1; Through the carboxylation of phosphoenolpyruvate (PEP) it forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle. Contributes probably to the adaptation to inorganic phosphate (Pi) deprivation; Belongs to the PEPCase type 1 family. (967 aa) | ||||
GWD1 | Alpha-glucan water dikinase 1, chloroplastic; Mediates the incorporation of phosphate into starch-like alpha-glucan, mostly at the C-6 position of glucose units. Acts as an overall regulator of starch mobilization. Required for starch degradation, suggesting that the phosphate content of starch regulates its degradability; Belongs to the PEP-utilizing enzyme family. (1399 aa) | ||||
GAPCP1 | Glyceraldehyde-3-phosphate dehydrogenase GAPCP1, chloroplastic; Involved in plastidial glycolytic pathway and plays a specific role in glycolytic energy production in non-green plastids and chloroplasts. Essential for breakdown of starch to form sucrose for export to non-photosynthetic tissues, and to generate primary metabolites for anabolic pathways such as fatty acid and amino acid synthesis. Plays an important role in plant development by providing substrates for the phosphorylated pathway of serine biosynthesis in roots. Plays a crucial role in pollen development. Functionally red [...] (422 aa) | ||||
HKL3 | Probable hexokinase-like 2 protein; Fructose and glucose phosphorylating enzyme. (493 aa) |