node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AUX1 | IAA17 | Q96247 | P93830 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | Auxin-responsive protein IAA17; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. | 0.929 |
AUX1 | PILS5 | Q96247 | Q9SHL8 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | Protein PIN-LIKES 5; Involved in cellular auxin homeostasis by regulating auxin metabolism. Regulates intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signaling. | 0.471 |
AUX1 | PIN2 | Q96247 | Q9LU77 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | Auxin efflux carrier component 2; Acts as a component of the auxin efflux carrier. Seems to be involved in the root-specific auxin transport, and mediates the root gravitropism. Its particular localization suggest a role in the translocation of auxin towards the elongation zone. | 0.929 |
AUX1 | PIN5 | Q96247 | Q9FFD0 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | Auxin efflux carrier component 5; Auxin transporter regulating intracellular auxin homeostasis and metabolism. Mediates the auxin transport from the cytosol into the lumen of the endoplasmic reticulum. May also act as an auxin efflux carrier when located to the cell membrane. PIN5 and PIN8 may have an antagonistic/compensatory activity. Involved in unfolded protein response (UPR) activation. Involved in the control of vein patterning. Promotes vein formation. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. | 0.821 |
AUX1 | PIN7 | Q96247 | Q940Y5 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | Auxin efflux carrier component 7; Acts as a component of the auxin efflux carrier. Mediates the initial auxin gradient which contributes to the establishment of the apical-basal axis in early embryogenesis. | 0.956 |
AUX1 | PIN8 | Q96247 | Q9LFP6 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | Auxin efflux carrier component 8; Component of the intracellular auxin-transport pathway in the male gametophyte. Involved in the regulation of auxin homeostasis in pollen. Involved in the efflux of auxin from the endoplasmic reticulum into the cytoplasm. PIN5 and PIN8 may have an antagonistic/compensatory activity. Involved in the control of vein patterning. Redundantly with PIN6, inhibits the vein-formation- promoting functions of PIN5. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. | 0.823 |
AUX1 | TIR | Q96247 | Q9SSN3 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | Toll/interleukin-1 receptor-like protein; Disease resistance protein. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via a direct or indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth (By similarity). | 0.979 |
AUX1 | WAT1 | Q96247 | Q94AP3 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | Protein WALLS ARE THIN 1; Required for secondary wall formation in fibers, especially in short days conditions. Promotes indole metabolism and transport (e.g. tryptophan, neoglucobrassicin and auxin (indole-3-acetic acid)). May prevent salicylic-acid (SA) accumulation. Belongs to the drug/metabolite transporter (DMT) superfamily. Plant drug/metabolite exporter (P-DME) (TC 2.A.7.4) family. | 0.781 |
IAA17 | AUX1 | P93830 | Q96247 | Auxin-responsive protein IAA17; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | 0.929 |
IAA17 | PIN2 | P93830 | Q9LU77 | Auxin-responsive protein IAA17; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. | Auxin efflux carrier component 2; Acts as a component of the auxin efflux carrier. Seems to be involved in the root-specific auxin transport, and mediates the root gravitropism. Its particular localization suggest a role in the translocation of auxin towards the elongation zone. | 0.802 |
IAA17 | PIN7 | P93830 | Q940Y5 | Auxin-responsive protein IAA17; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. | Auxin efflux carrier component 7; Acts as a component of the auxin efflux carrier. Mediates the initial auxin gradient which contributes to the establishment of the apical-basal axis in early embryogenesis. | 0.777 |
IAA17 | PIN8 | P93830 | Q9LFP6 | Auxin-responsive protein IAA17; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. | Auxin efflux carrier component 8; Component of the intracellular auxin-transport pathway in the male gametophyte. Involved in the regulation of auxin homeostasis in pollen. Involved in the efflux of auxin from the endoplasmic reticulum into the cytoplasm. PIN5 and PIN8 may have an antagonistic/compensatory activity. Involved in the control of vein patterning. Redundantly with PIN6, inhibits the vein-formation- promoting functions of PIN5. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. | 0.400 |
IAA17 | TIR | P93830 | Q9SSN3 | Auxin-responsive protein IAA17; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. | Toll/interleukin-1 receptor-like protein; Disease resistance protein. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via a direct or indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth (By similarity). | 0.611 |
PILS5 | AUX1 | Q9SHL8 | Q96247 | Protein PIN-LIKES 5; Involved in cellular auxin homeostasis by regulating auxin metabolism. Regulates intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signaling. | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | 0.471 |
PILS5 | PIN2 | Q9SHL8 | Q9LU77 | Protein PIN-LIKES 5; Involved in cellular auxin homeostasis by regulating auxin metabolism. Regulates intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signaling. | Auxin efflux carrier component 2; Acts as a component of the auxin efflux carrier. Seems to be involved in the root-specific auxin transport, and mediates the root gravitropism. Its particular localization suggest a role in the translocation of auxin towards the elongation zone. | 0.709 |
PILS5 | PIN5 | Q9SHL8 | Q9FFD0 | Protein PIN-LIKES 5; Involved in cellular auxin homeostasis by regulating auxin metabolism. Regulates intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signaling. | Auxin efflux carrier component 5; Auxin transporter regulating intracellular auxin homeostasis and metabolism. Mediates the auxin transport from the cytosol into the lumen of the endoplasmic reticulum. May also act as an auxin efflux carrier when located to the cell membrane. PIN5 and PIN8 may have an antagonistic/compensatory activity. Involved in unfolded protein response (UPR) activation. Involved in the control of vein patterning. Promotes vein formation. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. | 0.801 |
PILS5 | PIN7 | Q9SHL8 | Q940Y5 | Protein PIN-LIKES 5; Involved in cellular auxin homeostasis by regulating auxin metabolism. Regulates intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signaling. | Auxin efflux carrier component 7; Acts as a component of the auxin efflux carrier. Mediates the initial auxin gradient which contributes to the establishment of the apical-basal axis in early embryogenesis. | 0.767 |
PILS5 | PIN8 | Q9SHL8 | Q9LFP6 | Protein PIN-LIKES 5; Involved in cellular auxin homeostasis by regulating auxin metabolism. Regulates intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signaling. | Auxin efflux carrier component 8; Component of the intracellular auxin-transport pathway in the male gametophyte. Involved in the regulation of auxin homeostasis in pollen. Involved in the efflux of auxin from the endoplasmic reticulum into the cytoplasm. PIN5 and PIN8 may have an antagonistic/compensatory activity. Involved in the control of vein patterning. Redundantly with PIN6, inhibits the vein-formation- promoting functions of PIN5. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. | 0.795 |
PILS5 | WAT1 | Q9SHL8 | Q94AP3 | Protein PIN-LIKES 5; Involved in cellular auxin homeostasis by regulating auxin metabolism. Regulates intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signaling. | Protein WALLS ARE THIN 1; Required for secondary wall formation in fibers, especially in short days conditions. Promotes indole metabolism and transport (e.g. tryptophan, neoglucobrassicin and auxin (indole-3-acetic acid)). May prevent salicylic-acid (SA) accumulation. Belongs to the drug/metabolite transporter (DMT) superfamily. Plant drug/metabolite exporter (P-DME) (TC 2.A.7.4) family. | 0.651 |
PIN2 | AUX1 | Q9LU77 | Q96247 | Auxin efflux carrier component 2; Acts as a component of the auxin efflux carrier. Seems to be involved in the root-specific auxin transport, and mediates the root gravitropism. Its particular localization suggest a role in the translocation of auxin towards the elongation zone. | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | 0.929 |