STRINGSTRING
LFY LFY FRI FRI SIZ1 SIZ1 DTX47 DTX47 GH3.12 GH3.12 WIN1 WIN1 PAD4 PAD4 ICS1 ICS1 PUB13 PUB13 EDS1 EDS1 SOC1 SOC1 AGL24 AGL24 ACT1 ACT1 NPR1 NPR1 TFL1 TFL1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
LFYProtein LEAFY; Probable transcription factor that promotes early floral meristem identity in synergy with APETALA1. Is required subsequently for the transition of an inflorescence meristem into a floral meristem, by an immediate upstream regulation of the ABC classes of floral homeotic genes. Activates directly APETALA1, CAULIFLOWER and AGAMOUS, and indirectly APETALA3 and PISTILLATA with the cooperation of UFO. Belongs to the FLO/LFY family. (420 aa)
FRIInactive protein FRIGIDA. (314 aa)
SIZ1E3 SUMO-protein ligase SIZ1; E3 SUMO protein ligase involved in regulation processes. Mediates SUMO/ attachment to PHR1, a MYB transcriptional activator controlling the phosphate deficiency responses. Functions as an upstream negative regulator of salicylic acid (SA) accumulation and subsequent SA-mediated systemic acquired resistance (SAR) signaling. Probably not involved in jasmonic acid (JA)-mediated defense response. Participates in abiotic stress-induced sumoylation. Controls heat shock-induced SUMO1 and SUMO2 conjugation and facilitates basal thermotolerance. Involved in freezing [...] (884 aa)
DTX47Protein DETOXIFICATION 47, chloroplastic; Functions as a multidrug and toxin extrusion transporter in the export of salicylic acid (SA) from the chloroplast to the cytoplasm. Plays an essential function in plant defense via the pathogen-induced salicylic acid (SA) accumulation. Acts also as a key component of the Age-related resistance (ARR) pathway. (543 aa)
GH3.124-substituted benzoates-glutamate ligase GH3.12; Catalyzes the conjugation of specific amino acids (e.g. Glu and possibly His, Lys, and Met) to their preferred acyl substrates (e.g. 4-substituted benzoates), in a magnesium ion- and ATP-dependent manner. Can use 4-substituted benzoates such as 4-aminobenzoate (pABA), 4-fluorobenzoate and 4-hydroxybenzoate (4-HBA), and, to a lesser extent, benzoate, vanillate and trans-cinnamate, but not 2-substituted benzoates and salicylic acid (SA), as conjugating acyl substrates. Involved in both basal and induced resistance in a SA-dependent manner. [...] (575 aa)
WIN1Acetylornithine aminotransferase, chloroplastic/mitochondrial; Involved in the biosynthesis of citrulline (By similarity). Essential gene that modulates defense response to pathogenic bacteria, conferring susceptibility and repressing salicylic acid (SA) accumulation; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (457 aa)
PAD4Lipase-like PAD4; Probable lipase required downstream of MPK4 for accumulation of the plant defense-potentiating molecule, salicylic acid, thus contributing to the plant innate immunity against invasive biotrophic pathogens and to defense mechanisms upon recognition of microbe- associated molecular patterns (MAMPs). Participates in the regulation of various molecular and physiological processes that influence fitness. Together with SG101, required for programmed cell death (PCD) triggered by NBS-LRR resistance proteins (e.g. RPS4, RPW8.1 and RPW8.2) in response to the fungal toxin fumo [...] (541 aa)
ICS1Isochorismate synthase 1, chloroplastic; Involved in the synthesis of salicylic acid (SA) required for both local and systemic acquired resistance (LAR and SAR) while SA synthesized through the phenylalanine ammonium lyase (PAL) pathway seems to potentiate plant cell death. Also involved in phylloquinone (vitamin K1) synthesis. Has no isochorismate pyruvate lyase (IPL) activity. (569 aa)
PUB13U-box domain-containing protein 13; Functions as an E3 ubiquitin ligase. (660 aa)
EDS1Protein EDS1; Positive regulator of basal resistance and of effector- triggered immunity specifically mediated by TIR-NB-LRR (TNL) resistance proteins. Disruption by bacterial effector of EDS1-TIR-NB-LRR resistance protein interactions constitutes the first step in resistance activation. Acts redundantly with salicylic acid to regulate resistance gene-mediated signaling. Triggers early plant defenses and hypersensitive response independently of PAD4, and then recruits PAD4 to potentiate plant defenses through the accumulation of salicylic acid. Nuclear localization is essential for bas [...] (623 aa)
SOC1MADS-box protein SOC1; Transcription activator active in flowering time control. May integrate signals from the photoperiod, vernalization and autonomous floral induction pathways. Can modulate class B and C homeotic genes expression. When associated with AGL24, mediates effect of gibberellins on flowering under short-day conditions, and regulates the expression of LEAFY (LFY), which links floral induction and floral development. (214 aa)
AGL24MADS-box protein AGL24; Transcription activator that mediates floral transition in response to vernalization. Promotes inflorescence fate in apical meristems. Acts in a dosage-dependent manner. Probably involved in the transduction of RLK-mediated signaling (e.g. IMK3 pathway). Together with AP1 and SVP, controls the identity of the floral meristem and regulates expression of class B, C and E genes. When associated with SOC1, mediates effect of gibberellins on flowering under short-day conditions, and regulates the expression of LEAFY (LFY), which links floral induction and floral deve [...] (220 aa)
ACT1Actin-1; Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. Essential component of cell cytoskeleton; plays an important role in cytoplasmic streaming, cell shape determination, cell division, organelle movement and extension growth. This is considered as one of the reproductive actins. (377 aa)
NPR1Regulatory protein NPR1; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Key positive regulator of the SA-dependent signaling pathway that negatively regulates JA-dependent signaling pathway. Mediates the binding of TGA factors to the as-1 motif found in the pathogenesis-related PR-1 gene, leading to the transcriptional regulation of the gene defense. Controls the onset of systemic acquired resistance (SAR). Upon SAR induction, [...] (593 aa)
TFL1Protein TERMINAL FLOWER 1; Controls inflorescence meristem identity and is required for maintenance of an indeterminate inflorescence. Prevents the expression of 'APETALA1' and 'LEAFY'. Also plays a role in the regulation of the time of flowering in the long-day flowering pathway. May form complexes with phosphorylated ligands by interfering with kinases and their effectors (By similarity). (177 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (14%) [HD]