STRINGSTRING
CCMB CCMB ND1 ND1 ND3 ND3 RPS12 RPS12 CCMC CCMC atp6 atp6 nad1 nad1 nad5 nad5 nad2 nad2 ccmB ccmB nad9 nad9 ccmFC ccmFC nad6 nad6 nad4 nad4 rpl2 rpl2 nad3 nad3 ccmC ccmC rps12 rps12 nad7 nad7 matR matR nad4L nad4L atp4 atp4 ABCI5 ABCI5 ND2 ND2 ND5 ND5 RPS19 RPS19 RPS13 RPS13 RPL8A RPL8A rpl2-A rpl2-A rpl16 rpl16 rps19 rps19 ATP9 ATP9 ND6 ND6 rps12-A rps12-A COX1 COX1 RPS13-2 RPS13-2 NAD9 NAD9 RPL16 RPL16 RPS1 RPS1 atp9 atp9 ND4L ND4L ND4 ND4 RPL2 RPL2 NAD7 NAD7 CCMFC CCMFC
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
CCMBPutative cytochrome c biogenesis ccmB-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes. (206 aa)
ND1NADH-ubiquinone oxidoreductase chain 1; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (325 aa)
ND3NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (119 aa)
RPS12Ribosomal protein S12, mitochondrial; Protein S12 is involved in the translation initiation step; Belongs to the universal ribosomal protein uS12 family. (125 aa)
CCMCPutative cytochrome c biosynthesis ccmC-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes; Belongs to the CcmC/CycZ/HelC family. (232 aa)
atp6ATP synthase subunit a. (385 aa)
nad1NADH-ubiquinone oxidoreductase chain 1; Belongs to the complex I subunit 1 family. (325 aa)
nad5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (669 aa)
nad2NADH dehydrogenase subunit 2. (488 aa)
ccmBCytochrome c biogenesis B. (206 aa)
nad9NADH dehydrogenase subunit 9; Belongs to the complex I 30 kDa subunit family. (190 aa)
ccmFCCytochrome c biogenesis FC. (442 aa)
nad6NADH-ubiquinone oxidoreductase chain 6; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (205 aa)
nad4NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (495 aa)
rpl2Ribosomal protein L2. (349 aa)
nad3NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (118 aa)
ccmCPutative cytochrome c biosynthesis ccmC-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes. Belongs to the CcmC/CycZ/HelC family. (256 aa)
rps12Ribosomal protein S12; Belongs to the universal ribosomal protein uS12 family. (125 aa)
nad7NADH dehydrogenase subunit 7; Belongs to the complex I 49 kDa subunit family. (394 aa)
matRMaturase. (656 aa)
nad4LNADH dehydrogenase subunit 4L. (100 aa)
atp4ATPase subunit 4. (192 aa)
ABCI5Putative cytochrome c biosynthesis ccmC-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes. Belongs to the CcmC/CycZ/HelC family. (256 aa)
ND2NADH-ubiquinone oxidoreductase chain 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (499 aa)
ND5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (669 aa)
RPS1940S ribosomal protein S19, mitochondrial; The RNA-binding domain found in RPS19 may functionally replaces the missing mitochondrial RPS13; Belongs to the universal ribosomal protein uS19 family. (212 aa)
RPS1330S ribosomal protein S13, chloroplastic; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA; Belongs to the universal ribosomal protein uS13 family. (169 aa)
RPL8A60S ribosomal protein L8-1. (258 aa)
rpl2-A50S ribosomal protein L2, chloroplastic; Belongs to the universal ribosomal protein uL2 family. (274 aa)
rpl1650S ribosomal protein L16, chloroplastic; Belongs to the universal ribosomal protein uL16 family. (135 aa)
rps1930S ribosomal protein S19, chloroplastic; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (92 aa)
ATP9ATP synthase subunit 9, mitochondrial; This protein is one of the chains of the nonenzymatic membrane component (F0) of mitochondrial ATPase. (85 aa)
ND6NADH-ubiquinone oxidoreductase chain 6; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (205 aa)
rps12-A30S ribosomal protein S12, chloroplastic; With S4 and S5 plays an important role in translational accuracy. Located at the interface of the 30S and 50S subunits (By similarity). (123 aa)
COX1Cytochrome c oxidase subunit 1; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and t [...] (527 aa)
RPS13-2Small ribosomal subunit protein S13, mitochondrial; Located at the top of the head of the small subunit, it contacts several helices of the 18S rRNA. (154 aa)
NAD9NADH dehydrogenase [ubiquinone] iron-sulfur protein 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (190 aa)
RPL1660S ribosomal protein L16, mitochondrial; Belongs to the universal ribosomal protein uL16 family. (179 aa)
RPS130S ribosomal protein S1, chloroplastic; Required for optimal plastid performance in terms of photosynthesis and growth. Required for the translation of plastid mRNAs. Involved in cellular heat stress response and required for heat tolerance. Required for transcriptional activation of HSFA2 and its target genes in response to heat stress. Plays a critical role in biosynthesis of thylakoid membrane proteins encoded by chloroplast genes. (416 aa)
atp9ATP synthase subunit 9, mitochondrial; Belongs to the ATPase C chain family. (85 aa)
ND4LNADH-ubiquinone oxidoreductase chain 4L; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (100 aa)
ND4NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (495 aa)
RPL260S ribosomal protein L2, mitochondrial; Belongs to the universal ribosomal protein uL2 family. (349 aa)
NAD7NADH dehydrogenase [ubiquinone] iron-sulfur protein 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). Component of the iron-sulfur (IP) fragment of the enzyme. (394 aa)
CCMFCCytochrome c biogenesis CcmF C-terminal-like mitochondrial protein; Forms a complex with CCMFN1, CCMFN2 and CCMH that performs the assembly of heme with c-type apocytochromes in mitochondria. Belongs to the CcmF/CycK/Ccl1/NrfE/CcsA family. (442 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (22%) [HD]