Your Input: | |||||
psbA | Photosystem II protein D1; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. (353 aa) | ||||
rps7 | Ribosomal protein S7. (148 aa) | ||||
rpl2 | Ribosomal protein L2. (349 aa) | ||||
ILA | Protein ILITYHIA; Involved in immunity against bacterial infection and in non- host resistance. Required for embryo development. Required for systemic acquired resistance, but functions in an salicylic acid-independent manner. Required for bacterium-triggered stomatal closure response ; Belongs to the GCN1 family. (2696 aa) | ||||
rbcL | Ribulose bisphosphate carboxylase large chain; RuBisCO catalyzes two reactions: the carboxylation of D- ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate in the photorespiration process. Both reactions occur simultaneously and in competition at the same active site. Belongs to the RuBisCO large chain family. Type I subfamily. (479 aa) | ||||
ndhB1 | NAD(P)H-quinone oxidoreductase subunit 2 A, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Belongs to the complex I subunit 2 family. (512 aa) | ||||
atpB | ATP synthase subunit beta, chloroplastic; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (498 aa) | ||||
RPL8A | 60S ribosomal protein L8-1. (258 aa) | ||||
rpoB | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1072 aa) | ||||
ndhC | NAD(P)H-quinone oxidoreductase subunit 3, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (120 aa) | ||||
ndhF | NAD(P)H-quinone oxidoreductase subunit 5, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (By similarity). (746 aa) | ||||
ndhH | NAD(P)H-quinone oxidoreductase subunit H, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Belongs to the complex I 49 kDa subunit family. (393 aa) | ||||
ndhK | NAD(P)H-quinone oxidoreductase subunit K, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Belongs to the complex I 20 kDa subunit family. (225 aa) | ||||
atpI | ATP synthase subunit a, chloroplastic; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (249 aa) | ||||
rpoA | DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (329 aa) | ||||
accD | Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta, chloroplastic; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (488 aa) | ||||
clpP1 | Chloroplastic ATP-dependent Clp protease proteolytic subunit 1; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. (196 aa) | ||||
petB | Cytochrome b6; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (215 aa) | ||||
petD | Cytochrome b6-f complex subunit 4; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (160 aa) | ||||
petG | Cytochrome b6-f complex subunit 5; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. PetG is required for either the stability or assembly of the cytochrome b6-f complex. (37 aa) | ||||
psbB | Photosystem II CP47 reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbB subfamily. (508 aa) | ||||
psbE | Cytochrome b559 subunit alpha; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (83 aa) | ||||
psbH | Photosystem II reaction center protein H; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbH family. (73 aa) | ||||
psbK | Photosystem II reaction center protein K; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (61 aa) | ||||
cemA | Chloroplast envelope membrane protein; May be involved in proton extrusion. Indirectly promotes efficient inorganic carbon uptake into chloroplasts. Belongs to the Cema family. (229 aa) | ||||
matK | Maturase K; Usually encoded in the trnK tRNA gene intron. Probably assists in splicing its own and other chloroplast group II introns. Belongs to the intron maturase 2 family. MatK subfamily. (504 aa) | ||||
TIC214 | Protein TIC 214; Involved in protein precursor import into chloroplasts. May be part of an intermediate translocation complex acting as a protein- conducting channel at the inner envelope. Belongs to the TIC214 family. (1786 aa) | ||||
ycf2-A | Protein Ycf2; Probable ATPase of unknown function. Its presence in a non- photosynthetic plant (Epifagus virginiana) and experiments in tobacco indicate that it has an essential function which is probably not related to photosynthesis; Belongs to the Ycf2 family. (2294 aa) | ||||
rpl2-A | 50S ribosomal protein L2, chloroplastic; Belongs to the universal ribosomal protein uL2 family. (274 aa) | ||||
rpl20 | 50S ribosomal protein L20, chloroplastic; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit (By similarity). (117 aa) | ||||
rpl33 | 50S ribosomal protein L33, chloroplastic. (66 aa) | ||||
rps16 | 30S ribosomal protein S16, chloroplastic. (79 aa) | ||||
rps7-A | 30S ribosomal protein S7, chloroplastic; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. (155 aa) | ||||
rpl23-A | 50S ribosomal protein L23, chloroplastic; Binds to 23S rRNA. (93 aa) | ||||
rpl32 | 50S ribosomal protein L32, chloroplastic. (52 aa) | ||||
psbI | Photosystem II reaction center protein I; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (36 aa) | ||||
RPS7 | Ribosomal protein S7, mitochondrial; One of the primary rRNA binding proteins, it binds directly to 18S rRNA where it nucleates assembly of the head domain of the small subunit; Belongs to the universal ribosomal protein uS7 family. (148 aa) | ||||
RPL2 | 60S ribosomal protein L2, mitochondrial; Belongs to the universal ribosomal protein uL2 family. (349 aa) | ||||
NFXL2 | NF-X1-type zinc finger protein NFXL2; Probable transcriptional regulator. May mediate E2- or E3- dependent ubiquitination. Required to gate light sensitivity during the night. Regulates the speed of the clock by acting in the feedback loop between CCA1, LHY and APRR1/TOC1. Promotes the expression of CCA1 at night but not by days. This activational effect is enhanced by interaction with ADO1/ZTL. Association with ADO1/ZTL is not leading to the degradation of NFXL2. Confers sensitivity to osmotic stress such as high salinity. Prevents H(2)O(2) production and abscisic acid accumulation. P [...] (883 aa) | ||||
CDC73 | Protein CDC73 homolog; Component of the PAF1 complex (PAF1C) which is involved in histone modifications such as methylation on histone H3 'Lys-4' (H3K4me3). Involved in regulation of flowering time. Required for the expression of the flowering repressors FLC and MADS- box genes of the MAF family. Required for histone H3 trimethylation on 'Lys-4' (H3K4me3) at the FLC locus. Prevents trimethylation on 'Lys-27' (H3K27me3) at the same locus. (415 aa) | ||||
BLH9 | BEL1-like homeodomain protein 9; Transcription factor that is involved in the preservation of the spiral phyllotactic arrangement leading to a regular pattern of organ initiation. Required for maintenance of stem cell fate in the shoot apical meristem, and is essential for specifying floral primordia and establishing early internode patterning events during inflorescence development. Acts as transcription repressor of AG expression in floral and inflorescence meristems. Is also responsive of the nuclear import of SHOOT MERISTEMLESS (STM). In the fruit, plays a central role in patternin [...] (575 aa) |