node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ACO1 | AP2 | Q42560 | P47927 | Aconitate hydratase 1; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. Contributes to oxidative stress tolerance. May have a role in respiration. Belongs to the aconitase/IPM isomerase family. | Floral homeotic protein APETALA 2; Probable transcriptional activator that promotes early floral meristem identity. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes. Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and [...] | 0.718 |
ACO1 | CCR1-2 | Q42560 | Q9S9N9 | Aconitate hydratase 1; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. Contributes to oxidative stress tolerance. May have a role in respiration. Belongs to the aconitase/IPM isomerase family. | Cinnamoyl-CoA reductase 1; Involved in the latter stages of lignin biosynthesis. Catalyzes one of the last steps of monolignol biosynthesis, the conversion of cinnamoyl-CoAs into their corresponding cinnamaldehydes. | 0.437 |
ACO1 | CCR2-2 | Q42560 | Q9SAH9 | Aconitate hydratase 1; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. Contributes to oxidative stress tolerance. May have a role in respiration. Belongs to the aconitase/IPM isomerase family. | Cinnamoyl-CoA reductase 2; Cinnamoyl-CoA reductase probably involved in the formation of phenolic compounds associated with the hypersensitive response. Seems not to be involved in lignin biosynthesis. Belongs to the NAD(P)-dependent epimerase/dehydratase family. Dihydroflavonol-4-reductase subfamily. | 0.437 |
ACO1 | PAL1 | Q42560 | P35510 | Aconitate hydratase 1; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. Contributes to oxidative stress tolerance. May have a role in respiration. Belongs to the aconitase/IPM isomerase family. | Phenylalanine ammonia-lyase 1; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. | 0.740 |
ACO1 | PAL2 | Q42560 | P45724 | Aconitate hydratase 1; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. Contributes to oxidative stress tolerance. May have a role in respiration. Belongs to the aconitase/IPM isomerase family. | Phenylalanine ammonia-lyase 2; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. | 0.744 |
ACO1 | PAL3 | Q42560 | P45725 | Aconitate hydratase 1; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. Contributes to oxidative stress tolerance. May have a role in respiration. Belongs to the aconitase/IPM isomerase family. | Phenylalanine ammonia-lyase 3; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton. | 0.735 |
ACO1 | PAL4 | Q42560 | Q9SS45 | Aconitate hydratase 1; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. Contributes to oxidative stress tolerance. May have a role in respiration. Belongs to the aconitase/IPM isomerase family. | Phenylalanine ammonia-lyase 4; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. | 0.733 |
AP2 | ACO1 | P47927 | Q42560 | Floral homeotic protein APETALA 2; Probable transcriptional activator that promotes early floral meristem identity. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes. Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and [...] | Aconitate hydratase 1; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. Contributes to oxidative stress tolerance. May have a role in respiration. Belongs to the aconitase/IPM isomerase family. | 0.718 |
AP2 | CCOAMT | P47927 | Q9C9W3 | Floral homeotic protein APETALA 2; Probable transcriptional activator that promotes early floral meristem identity. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes. Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and [...] | Putative caffeoyl-CoA O-methyltransferase At1g67980; Methylates caffeoyl-CoA to feruloyl-CoA and 5- hydroxyferuloyl-CoA to sinapoyl-CoA. Plays a role in the synthesis of feruloylated polysaccharides. Involved in the reinforcement of the plant cell wall. Also involved in the responding to wounding or pathogen challenge by the increased formation of cell wall-bound ferulic acid polymers (By similarity). | 0.540 |
AP2 | CCR1-2 | P47927 | Q9S9N9 | Floral homeotic protein APETALA 2; Probable transcriptional activator that promotes early floral meristem identity. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes. Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and [...] | Cinnamoyl-CoA reductase 1; Involved in the latter stages of lignin biosynthesis. Catalyzes one of the last steps of monolignol biosynthesis, the conversion of cinnamoyl-CoAs into their corresponding cinnamaldehydes. | 0.438 |
AP2 | CCR2-2 | P47927 | Q9SAH9 | Floral homeotic protein APETALA 2; Probable transcriptional activator that promotes early floral meristem identity. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes. Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and [...] | Cinnamoyl-CoA reductase 2; Cinnamoyl-CoA reductase probably involved in the formation of phenolic compounds associated with the hypersensitive response. Seems not to be involved in lignin biosynthesis. Belongs to the NAD(P)-dependent epimerase/dehydratase family. Dihydroflavonol-4-reductase subfamily. | 0.410 |
AP2 | CYP73A5 | P47927 | P92994 | Floral homeotic protein APETALA 2; Probable transcriptional activator that promotes early floral meristem identity. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes. Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and [...] | Trans-cinnamate 4-monooxygenase; Controls carbon flux to pigments essential for pollination or UV protection, to numerous pytoalexins synthesized by plants when challenged by pathogens, and to lignins. | 0.610 |
AP2 | PAL1 | P47927 | P35510 | Floral homeotic protein APETALA 2; Probable transcriptional activator that promotes early floral meristem identity. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes. Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and [...] | Phenylalanine ammonia-lyase 1; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. | 0.720 |
AP2 | PAL2 | P47927 | P45724 | Floral homeotic protein APETALA 2; Probable transcriptional activator that promotes early floral meristem identity. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes. Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and [...] | Phenylalanine ammonia-lyase 2; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. | 0.718 |
AP2 | PAL3 | P47927 | P45725 | Floral homeotic protein APETALA 2; Probable transcriptional activator that promotes early floral meristem identity. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes. Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and [...] | Phenylalanine ammonia-lyase 3; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton. | 0.718 |
AP2 | PAL4 | P47927 | Q9SS45 | Floral homeotic protein APETALA 2; Probable transcriptional activator that promotes early floral meristem identity. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes. Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and [...] | Phenylalanine ammonia-lyase 4; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. | 0.718 |
AP2 | T25K17.30 | P47927 | Q9C5D7 | Floral homeotic protein APETALA 2; Probable transcriptional activator that promotes early floral meristem identity. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes. Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and [...] | Probable caffeoyl-CoA O-methyltransferase At4g26220; Methylates caffeoyl-CoA to feruloyl-CoA and 5- hydroxyferuloyl-CoA to sinapoyl-CoA. Plays a role in the synthesis of feruloylated polysaccharides. Involved in the reinforcement of the plant cell wall. Also involved in the responding to wounding or pathogen challenge by the increased formation of cell wall-bound ferulic acid polymers (By similarity); Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-dependent O-methyltransferase family. CCoAMT subfamily. | 0.435 |
AP2 | TIR | P47927 | Q9SSN3 | Floral homeotic protein APETALA 2; Probable transcriptional activator that promotes early floral meristem identity. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes. Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and [...] | Toll/interleukin-1 receptor-like protein; Disease resistance protein. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via a direct or indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth (By similarity). | 0.598 |
CCOAMT | AP2 | Q9C9W3 | P47927 | Putative caffeoyl-CoA O-methyltransferase At1g67980; Methylates caffeoyl-CoA to feruloyl-CoA and 5- hydroxyferuloyl-CoA to sinapoyl-CoA. Plays a role in the synthesis of feruloylated polysaccharides. Involved in the reinforcement of the plant cell wall. Also involved in the responding to wounding or pathogen challenge by the increased formation of cell wall-bound ferulic acid polymers (By similarity). | Floral homeotic protein APETALA 2; Probable transcriptional activator that promotes early floral meristem identity. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes. Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and [...] | 0.540 |
CCOAMT | CCR1-2 | Q9C9W3 | Q9S9N9 | Putative caffeoyl-CoA O-methyltransferase At1g67980; Methylates caffeoyl-CoA to feruloyl-CoA and 5- hydroxyferuloyl-CoA to sinapoyl-CoA. Plays a role in the synthesis of feruloylated polysaccharides. Involved in the reinforcement of the plant cell wall. Also involved in the responding to wounding or pathogen challenge by the increased formation of cell wall-bound ferulic acid polymers (By similarity). | Cinnamoyl-CoA reductase 1; Involved in the latter stages of lignin biosynthesis. Catalyzes one of the last steps of monolignol biosynthesis, the conversion of cinnamoyl-CoAs into their corresponding cinnamaldehydes. | 0.993 |