Your Input: | |||||
ASK9-2 | SKP1-like protein 9; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity). (153 aa) | ||||
F1C9.19 | Transferase. (666 aa) | ||||
SPT6 | Transcription elongation factor SPT6 homolog; Transcription elongation factor that enhances the transcription elongation by RNA polymerase II (RNAPII) (By similarity). Plays an important role in regulating embryo apical and basal patterning during early embryogenesis, partly through negative regulation of the transcription factors PHABULOSA and PHAVOLUTA. Belongs to the SPT6 family. (1647 aa) | ||||
IWS1 | Protein IWS1 homolog 1; Transcription factor involved in RNA polymerase II (RNAPII) transcription regulation. Involved in transcription elongation. May function at post-recruitment and elongation steps of transcription. May be recruited by BZR2/BES1 to target genes and promote their expression during transcription elongation process. Required for brassinosteroid (BR)-induced gene expression. Required the for regulation of numerous nitrogen-responsive genes in roots. Acts in roots to repress NRT2.1 transcription in response to high nitrogen supply. This repression is associated with an [...] (502 aa) | ||||
SFH2 | Phosphatidylinositol/phosphatidylcholine transfer protein SFH2; Required for transport of secretory proteins from the Golgi complex (By similarity). Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes in vitro. (554 aa) | ||||
ABI2 | Protein phosphatase 2C 77; Repressor of the abscisic acid (ABA) signaling pathway that regulates numerous ABA responses, such as stomatal closure, osmotic water permeability of the plasma membrane (Pos), high light stress, response to glucose, seed germination and inhibition of vegetative growth. During the stomatal closure regulation, modulates the inward calcium-channel permeability as well as H(2)O(2) and oxidative burst in response to ABA and dehydration. Represses GHR1 and, to some extent, SRK2E/OST1, kinases involved in the regulation of SLAC1-dependent stomatal closure. Controls [...] (423 aa) | ||||
HDA19 | Histone deacetylase 19; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. HDA19 is involved in jasmonic acid and ethylene signaling of pathogen response. Part of a repressor complex including APETALA2 (AP2) and TOPLESS (TPL) that control the expression domains of numerous flora [...] (501 aa) | ||||
BIA1 | BAHD acyltransferase BIA1; Monitors brassinosteroids (BR) responses and homeostasis, particularly in the root and hypocotyl in darkness. Promotes flavonoid biosynthesis. Belongs to the plant acyltransferase family. (435 aa) | ||||
HY5 | Transcription factor HY5; Transcription factor that promotes photomorphogenesis in light. Acts downstream of the light receptor network and directly affects transcription of light-induced genes. Specifically involved in the blue light specific pathway, suggesting that it participates in transmission of cryptochromes (CRY1 and CRY2) signals to downstream responses. In darkness, its degradation prevents the activation of light-induced genes (Probable). Acts coordinately with SPL7 to regulate the microRNA miR408 and its target genes in response to changes in light and copper conditions. R [...] (168 aa) | ||||
ARR10 | Two-component response regulator ARR10; Transcriptional activator that binds specifically to the DNA sequence 5'-[AG]GATT-3'. Functions as a response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Could directly activate some type-A response regulators in response to cytokinins. (552 aa) | ||||
ASK11 | SKP1-like protein 11; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity). Plays a role during early flowers reproductive development. (152 aa) | ||||
NCED2 | 9-cis-epoxycarotenoid dioxygenase NCED2, chloroplastic; Has a 11,12(11',12') 9-cis epoxycarotenoid cleavage activity. Catalyzes the first step of abscisic-acid biosynthesis from carotenoids; Belongs to the carotenoid oxygenase family. (583 aa) | ||||
CCD4 | Probable carotenoid cleavage dioxygenase 4, chloroplastic; May be involved in carotenoid cleavage; Belongs to the carotenoid oxygenase family. (595 aa) | ||||
GATA2 | GATA transcription factor 2; Transcriptional activator that specifically binds 5'-GATA-3' or 5'-GAT-3' motifs within gene promoters. May be involved in the regulation of some light-responsive genes. (264 aa) | ||||
GA2OX3 | Gibberellin 2-beta-dioxygenase 3; Catalyzes the 2-beta-hydroxylation of several biologically active gibberellins, leading to the homeostatic regulation of their endogenous level. Catabolism of gibberellins (GAs) plays a central role in plant development. Converts GA9/GA20 to GA51/GA29 and GA4/GA1 to GA34/GA8; Belongs to the iron/ascorbate-dependent oxidoreductase family. GA2OX subfamily. (335 aa) | ||||
CYP90B1 | Cytochrome P450 90B1; Catalyzes the C22-alpha-hydroxylation step in brassinosteroids biosynthesis. Converts campestanol to 6- deoxocathasterone and 6-oxocampestanol to cathasterone. (513 aa) | ||||
ASK12 | SKP1-like protein 12; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity). Plays a role during early flowers reproductive development. (152 aa) | ||||
ASK16 | SKP1-like protein 16; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity). (170 aa) | ||||
ASK14 | SKP1-like protein 14; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity). (149 aa) | ||||
ASK19 | SKP1-like protein 19; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity); Belongs to the SKP1 family. (200 aa) | ||||
ABI1 | Protein phosphatase 2C 56; Key component and repressor of the abscisic acid (ABA) signaling pathway that regulates numerous ABA responses, such as stomatal closure, osmotic water permeability of the plasma membrane (Pos), drought-induced resistance and rhizogenesis, response to glucose, high light stress, seed germination and inhibition of vegetative growth. During the stomatal closure regulation, modulates the inward calcium-channel permeability as well as the actin reorganization in guard cells in response to ABA. Involved in the resistance to the bacterial pathogen Pseudomonas syrin [...] (434 aa) | ||||
HTR4 | Histone H3.3; Variant histone H3 which replaces conventional H3 in a wide range of nucleosomes in active genes. Constitutes the predominant form of histone H3 in non-dividing cells and is incorporated into chromatin independently of DNA synthesis. Deposited at sites of nucleosomal displacement throughout transcribed genes, suggesting that it represents an epigenetic imprint of transcriptionally active chromatin. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in [...] (136 aa) | ||||
HTR2 | Histone H3.2; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (136 aa) | ||||
ARR12 | Two-component response regulator ARR12; Transcriptional activator that binds specifically to the DNA sequence 5'-[AG]GATT-3'. Functions as a response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Could directly activate some type-A response regulators in response to cytokinins. Involved in the root-meristem size determination through the regulation of cell differentiation. Involved in activating SHY2 during meristem gro [...] (596 aa) | ||||
NPR1 | Regulatory protein NPR1; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Key positive regulator of the SA-dependent signaling pathway that negatively regulates JA-dependent signaling pathway. Mediates the binding of TGA factors to the as-1 motif found in the pathogenesis-related PR-1 gene, leading to the transcriptional regulation of the gene defense. Controls the onset of systemic acquired resistance (SAR). Upon SAR induction, [...] (593 aa) | ||||
ARF7 | Auxin response factor 7; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Act as a transcriptional activator of several tropic stimulus-induced (TSI) genes, including SAUR50. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Required for differential growth responses of aerial tissues. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LB [...] (1164 aa) | ||||
IAA17 | Auxin-responsive protein IAA17; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. (229 aa) | ||||
ABI3 | B3 domain-containing transcription factor ABI3; Participates in abscisic acid-regulated gene expression during seed development. Regulates the transcription of SGR1 and SGR2 that are involved in leaf and embryo degreening. (720 aa) | ||||
BBX20 | B-box zinc finger protein 20; Acts as positive regulator of seedling photomorphogenesis. Plays a negative role in brassinosteroid responses. (242 aa) | ||||
BRX | Protein BREVIS RADIX; Acts as a regulator of cell proliferation and elongation in the root and shoot. Regulates roots architecture and primary root protophloem differentiation. Probable transcription regulator. Regulated by the auxin response factor ARF5. Polarly localized in vascular cells and subject to endocytic recycling. Required for CPD expression and for correct nuclear auxin response. Mediates cross-talk between the auxin and brassinosteroid pathways. BRX is a target for auxin-induced, proteasome-mediated degradation. (344 aa) | ||||
ASK6 | SKP1-like protein 6; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity). (85 aa) | ||||
ASK15 | SKP1-like protein 15; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity). (177 aa) | ||||
ASHH2 | Histone-lysine N-methyltransferase ASHH2; Histone methyltransferase involved in di and tri-methylation of 'Lys-36' of histone H3 (H3K36me2 and H3K36me3). Binds to H3 already mono- or di-methylated on 'Lys-4'(H3K4me1 or H3K4me2), but not to H3K4me3. H3K4me and H3K36me represent specific tags for epigenetic transcriptional activation. Regulates positively FLC transcription to prevent early flowering transition. Required for flowering transition in response to vernalization and for the maintenance of FLC expression in late embryos, but dispensable for the initial reactivation in early emb [...] (1759 aa) | ||||
ACS5 | 1-aminocyclopropane-1-carboxylate synthase 5; 1-aminocyclopropane-1-carboxylate synthase (ACS) enzymes catalyze the conversion of S-adenosyl-L-methionine (SAM) into 1- aminocyclopropane-1-carboxylate (ACC), a direct precursor of ethylene. (470 aa) | ||||
IAA7 | Auxin-responsive protein IAA7; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. (243 aa) | ||||
IAA14 | Auxin-responsive protein IAA14; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. (228 aa) | ||||
TIF3I1 | Eukaryotic translation initiation factor 3 subunit I; Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is involved in protein synthesis of a specialized repertoire of mRNAs and, together with other initiation factors, stimulates binding of mRNA and methionyl-tRNAi to the 40S ribosome. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation. (328 aa) | ||||
DET2 | Steroid 5-alpha-reductase DET2; Involved in a reduction step in the biosynthesis of the plant steroid, brassinolide; acts at the second step in brassinolide biosynthesis in the 5alpha-reduction of (24R)- 24-methylcholest-4-en-3- one, which is further modified to form campestanol. Can use progesterone, testosterone, androstenedione and campestenone as substrate. (262 aa) | ||||
ASK7 | Shaggy-related protein kinase eta; Negative regulator in brassinosteroid signal transduction pathway important for plant growth. May be also involved in auxin signaling pathway. Phosphorylates and increases the degradation of BZR1 and BZR2/BES1 by the proteasome. Phosphorylates BHLH150, beet curly top virus C4 and tomato golden mosaic virus AC4 on threonine and serine residues. Upon brassinosteroid signaling, inhibits stomatal development by phosphorylating and inhibiting the MAPKK kinase YDA and the MAPK kinases MKK4 and MKK5. Phosphorylates BSK1, BSK3, BSK5, BSK6, BSK8 AND BSK11 in v [...] (380 aa) | ||||
MYC2 | Transcription factor MYC2; Transcriptional activator. Common transcription factor of light, abscisic acid (ABA), and jasmonic acid (JA) signaling pathways. With MYC3 and MYC4, controls additively subsets of JA-dependent responses. In cooperation with MYB2 is involved in the regulation of ABA-inducible genes under drought stress conditions. Can form complexes with all known glucosinolate-related MYBs to regulate glucosinolate biosynthesis. Binds to the MYC recognition site (5'-CACATG-3'), and to the G-box (5'-CACNTG-3') and Z-box (5'-ATACGTGT-3') of promoters. Binds directly to the prom [...] (623 aa) | ||||
SKP1A | SKP1-like protein 1A; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1. SCF(UFO) is required for vegetative and floral organ development as well as for male gametogenesis. SCF(TIR1) is involved in auxin signaling pathway. SCF(COI1) regulates responses to jasmonates. SCF(EID1) and SCF(AFR) are implicate [...] (160 aa) | ||||
CYP90A1 | Cytochrome P450 90A1. (472 aa) | ||||
ACS4 | 1-aminocyclopropane-1-carboxylate synthase 4; 1-aminocyclopropane-1-carboxylate synthase (ACS) enzymes catalyze the conversion of S-adenosyl-L-methionine (SAM) into 1- aminocyclopropane-1-carboxylate (ACC), a direct precursor of ethylene. (474 aa) | ||||
TIR1 | Protein TRANSPORT INHIBITOR RESPONSE 1; Auxin receptor that mediates Aux/IAA proteins proteasomal degradation and auxin-regulated transcription. The SCF(TIR1) E3 ubiquitin ligase complex is involved in auxin-mediated signaling pathway that regulate root and hypocotyl growth, lateral root formation, cell elongation, and gravitropism. Appears to allow pericycle cells to overcome G2 arrest prior to lateral root development. Plays a role in ethylene signaling in roots. Confers sensitivity to the virulent bacterial pathogen P.syringae. (594 aa) | ||||
ELF6 | Probable lysine-specific demethylase ELF6; Acts probably as a histone 'Lys-4' (H3K4me) demethylase. Involved in transcriptional gene regulation. Acts as a repressor of the photoperiodic flowering pathway and of FT. Binds around the transcription start site of the FT locus. (1340 aa) | ||||
Q6NLV9_ARATH | Sulfotransferase; Belongs to the sulfotransferase 1 family. (340 aa) | ||||
HTR12 | Histone H3-like centromeric protein HTR12; Histone H3-like variant which exclusively replaces conventional H3 in the nucleosome core of centromeric chromatin at the inner plate of the kinetochore. Required for recruitment and assembly of kinetochore proteins, mitotic progression and chromosome segregation. May serve as an epigenetic mark that propagates centromere identity through replication and cell division (By similarity). (178 aa) | ||||
PIN4 | Auxin efflux carrier component 4; Acts as a component of the auxin efflux carrier. Plays a role in generating a sink for auxin into columella cells. Maintains the endogenous auxin gradient, which is essential for correct root patterning. Involved in EXO70A3-regulated gravitropic responses in columella cells and in root system architecture (RSA). (616 aa) | ||||
ARF19 | Auxin response factor 19; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Could act as transcriptional activator or repressor. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LBD29. Functionally redundant with ARF7. (1086 aa) | ||||
PIF4 | Transcription factor PIF4; Transcription factor acting negatively in the phytochrome B signaling pathway. May regulate the expression of a subset of genes involved in cell expansion by binding to the G-box motif (By similarity). Activated by CRY1 and CRY2 in response to low blue light (LBL) by direct binding at chromatin on E-box variant 5'-CA[CT]GTG-3' to stimulate specific gene expression to adapt global physiology (e.g. hypocotyl elongation in low blue light). Belongs to the bHLH protein family. (430 aa) | ||||
ARR1 | Two-component response regulator ARR1; Transcriptional activator that binds specifically to the DNA sequence 5'-[AG]GATT-3'. Functions as a response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Could directly activate some type-A response regulators in response to cytokinins. Regulates SHY2 by binding to its promoter. Involved in the root-meristem size determination through the regulation of cell differentiation. Belon [...] (690 aa) | ||||
CYP85A2 | Cytochrome P450 85A2; Catalyzes the C6-oxidation step in brassinosteroids biosynthesis. Converts 6-deoxocastasterone to castasterone, and castasterone to brassinolide. May also convert 6-deoxoteasterone to teasterone, 3-dehydro-6-deoxoteasterone to 3-dehydroteasterone, and 6- deoxotyphasterol to typhasterol; Belongs to the cytochrome P450 family. (465 aa) | ||||
RBX1A | RING-box protein 1a; Component of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex, which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. The SCF complex plays a crucial role in regulating response to auxin and is essential for growth and development. Through the RING-type zinc finger, seems to recruit the E2 ubiquitination enzyme, to the complex and brings it into close proximity to the substrate. Promotes the neddylation of CUL1. Belongs to the RING-box family. (118 aa) | ||||
PIN7 | Auxin efflux carrier component 7; Acts as a component of the auxin efflux carrier. Mediates the initial auxin gradient which contributes to the establishment of the apical-basal axis in early embryogenesis. (619 aa) | ||||
BSK1 | Serine/threonine-protein kinase BSK1; Serine/threonine kinase that acts as positive regulator of brassinosteroid (BR) signaling downstream of the receptor kinase BRI1. Mediates signal transduction from BRI1 by functioning as substrate of BRI1. Functions as a positive regulator of plant immunity. May be involved in the regulation of pattern-triggered immunity (PTI) downstream of the flagellin receptor FLS2. Possesses kinase activity in vitro. Kinase activity is required for its function in innate immunity. (512 aa) | ||||
SERK1 | Somatic embryogenesis receptor kinase 1; Dual specificity kinase acting on both serine/threonine- and tyrosine-containing substrates. Phosphorylates BRI1 on 'Ser-887' and CDC48 on at least one threonine residue and on 'Ser-41'. Confers embryogenic competence. Acts redundantly with SERK2 as a control point for sporophytic development controlling male gametophyte production. Involved in the brassinolide signaling pathway. (625 aa) | ||||
CUL1 | Cullin-1; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Regulator of mitotic processes which plays a role during gametogenesis and embryogenesis. Together with SKP1, RBX1 and a F-box protein, it forms a SCF complex. The functional specificity of this complex depends of the type of F-box protein. SCF(UFO) is implicated in floral organ development. SCF(TIR1) is involved in auxin signaling pathway. SCF(COI1) regulates responses to jasmonates. SCF(EID1) and SCF(AFR) are implicated in phytochrome A light signaling. SCF(ADO1/ZTL), SCF(ADO2/LKP2), SCF(A [...] (738 aa) | ||||
BAK1 | BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1; Dual specificity kinase acting on both serine/threonine- and tyrosine-containing substrates. Controls the expression of genes associated with innate immunity in the absence of pathogens or elicitors. Involved in brassinosteroid (BR) signal transduction. Phosphorylates BRI1. May be involved in changing the equilibrium between plasma membrane-located BRI1 homodimers and endocytosed BRI1- BAK1 heterodimers. Interaction with MSBP1 stimulates the endocytosis of BAK1 and suppresses brassinosteroid signaling. Acts in pathogen- associ [...] (615 aa) | ||||
CYP90D1 | 3-epi-6-deoxocathasterone 23-monooxygenase CYP90D1; Involved in brassinosteroid (BR) biosynthesis. May convert teasterone to 3- dehydroteasterone, or 6-deoxoteasterone to 3-dehydro-6-deoxoteasterone. C-23 hydroxylase that converts directly (22S,24R)- 22-hydroxy-5-alpha-ergostan-3-one and 3-epi-6-deoxocathasterone to 3- dehydro-6-deoxoteasterone and 6-deoxotyphasterol, respectively. These C-23 hydroxylation shortcuts bypass campestanol, 6-deoxocathasterone, and 6-deoxoteasterone. (491 aa) | ||||
ARF2 | Auxin response factor 2; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Could act as transcriptional activator or repressor. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Promotes flowering, stamen development, floral organ abscission and fruit dehiscence. Functions independently of ethylene and cytokinin response pathways. May act as a repressor of cell division and organ growth. (859 aa) | ||||
AUX1 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] (485 aa) | ||||
ABA3 | Molybdenum cofactor sulfurase; Sulfurates the molybdenum cofactor. Sulfation of molybdenum is essential for xanthine dehydrogenase (XDH) and aldehyde oxidase (ADO) enzymes in which molybdenum cofactor is liganded by 1 oxygen and 1 sulfur atom in active form. Modulates cold stress- and osmotic stress-responsive gene expression by acting as key regulator of abscisic acid (ABA) biosynthesis. Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. MOCOS subfamily. (819 aa) | ||||
NCED5 | Probable 9-cis-epoxycarotenoid dioxygenase NCED5, chloroplastic; Has a 11,12(11',12') 9-cis epoxycarotenoid cleavage activity. Catalyzes the first step of abscisic-acid biosynthesis from carotenoids (By similarity); Belongs to the carotenoid oxygenase family. (589 aa) | ||||
MYBL2 | Putative transcription factor; 20982-20139. (195 aa) | ||||
PRE3 | Transcription factor PRE3; Atypical and probable non DNA-binding bHLH transcription factor required for MONOPTEROS-dependent root initiation in embryo. Promotes the correct definition of the hypophysis cell division plane. Transcriptionally controlled by MONOPTEROS. Moves from its site of synthesis in pro-embryos cells into the hypophysis. Regulates brassinosteroid (BR) signaling by sequestering negative BR signaling components. May function as positive regulator of gibberellin signaling. May play a role in the regulation of light signaling and possibly auxin signaling. (93 aa) | ||||
GLK2 | Transcription activator GLK2; Transcriptional activator that functions with GLK1 to promote chloroplast development. Acts as an activator of nuclear photosynthetic genes involved in chlorophyll biosynthesis, light harvesting, and electron transport. Acts in a cell-autonomous manner to coordinate and maintain the photosynthetic apparatus within individual cells. May function in photosynthetic capacity optimization by integrating responses to variable environmental and endogenous cues. Prevents premature senescence. (386 aa) | ||||
ZEP | Zeaxanthin epoxidase, chloroplastic; Zeaxanthin epoxidase that plays an important role in the xanthophyll cycle and abscisic acid (ABA) biosynthesis. Converts zeaxanthin into antheraxanthin and subsequently violaxanthin. Required for resistance to osmotic and drought stresses, ABA-dependent stomatal closure, seed development and dormancy, modulation of defense gene expression and disease resistance and non-photochemical quencing (NPQ). Through its role in ABA biosynthesis, regulates the expression of stress-responsive genes such as RD29A during osmotic stress and is required for normal [...] (667 aa) | ||||
SKP1B | SKP1-like protein 1B; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1. SCF(UFO) is required for vegetative and floral organ development as well as for male gametogenesis. SCF(TIR1) is involved in auxin signaling pathway. SCF(COI1) regulates responses to jasmonates. SCF(EID1) and SCF(AFR) are implicate [...] (171 aa) | ||||
BSK5 | Serine/threonine-protein kinase BSK5; Probable serine/threonine kinase that acts as positive regulator of brassinosteroid (BR) signaling downstream of the receptor kinase BRI1. Involved in abiotic stress tolerance. Required for salt stress and abscisic acid-mediated drought stress tolerance. (489 aa) | ||||
HTR11 | Histone H3-like 5; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity). (139 aa) | ||||
PRE1 | Transcription factor PRE1; Atypical and probable non DNA-binding bHLH transcription factor that integrates multiple signaling pathways to regulate cell elongation and plant development. Binds IBH1, forming a pair of antagonistic bHLH transcription factors that function downstream of BZR1 to mediate brassinosteroid regulation of cell elongation. Regulates light responses by binding and inhibiting the activity of the bHLH transcription factor HFR1, a critical regulator of light signaling and shade avoidance. May have a regulatory role in various aspects of gibberellin-dependent growth an [...] (92 aa) | ||||
CYP85A1 | Cytochrome P450 85A1; Catalyzes the C6-oxidation step in brassinosteroids biosynthesis. Converts 6-deoxocastasterone to castasterone. May also convert 6-deoxoteasterone to teasterone, 3-dehydro-6-deoxoteasterone to 3-dehydroteasterone, and 6-deoxotyphasterol to typhasterol. (465 aa) | ||||
BKI1 | BRI1 kinase inhibitor 1; Negative regulator of brassinosteroid signaling. When associated to the membrane, limits the interaction of BRI1 with BAK1 by binding to the kinase-inactive form of BRI1. (337 aa) | ||||
MRH10.19 | Basic-leucine zipper (BZIP) transcription factor family protein. (315 aa) | ||||
T6J4.12 | Histone H3-like 1; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity). (136 aa) | ||||
MGH3 | Histone H3-like 2; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity). (137 aa) | ||||
DWF5 | 7-dehydrocholesterol reductase; Production of cholesterol by reduction of C7-C8 double bond of 7-dehydrocholesterol (7-DHC). Lesions in the gene coding for the enzyme cause dwarfism; Belongs to the ERG4/ERG24 family. (432 aa) | ||||
BIM1 | Transcription factor BIM1; Positive brassinosteroid-signaling protein. Transcription factor that bind specifically to the DNA sequence 5'-CANNTG-3'(E box). Can bind individually to the promoter as a homodimer or synergistically as a heterodimer with BZR2/BES1. Does not itself activate transcription but enhances BZR2/BES1-mediated target gene activation. (529 aa) | ||||
BRL3 | Receptor-like protein kinase BRI1-like 3; Receptor with a dual specificity kinase activity acting on both serine/threonine- and tyrosine-containing substrates. Binds brassinolide. Regulates, in response to brassinosteroid binding, a signaling cascade involved in plant development. May be involved in cell growth and vascular differentiation. Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. (1164 aa) | ||||
BZR2 | Protein BRASSINAZOLE-RESISTANT 2; Positive regulator of brassinosteroid (BR) signaling. Transcription factor that activates target gene expression by binding specifically to the DNA sequence 5'-CANNTG-3'(E box) through its N- terminal domain. Can bind individually to the promoter as a homodimer or synergistically as a heterodimer with BIM1, BIM2 or BIM3. The C- terminal domain is probably involved in transcriptional activation. Recruits the transcription elongation factor IWS1 to control BR- regulated gene expression. Forms a trimeric complex with IWS1 and ASHH2/SDG8 to regulate BR-reg [...] (335 aa) | ||||
ASK4-2 | SKP1-like protein 4; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity). (163 aa) | ||||
F10A5.19 | Histone H3-like 3; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity). (136 aa) | ||||
BSU1 | Serine/threonine-protein phosphatase BSU1; Phosphatase that acts as a positive regulator of brassinosteroid (BR) signaling. Dephosphorylates BES1, a transcription factor that regulates the expression of BR-response genes, thereby playing an important role in the regulation of response to BRs. Inactivates the negative regulator of BR signaling ASK7/BIN2 by dephosphorylation at 'Tyr-200'. (793 aa) | ||||
NCED6 | 9-cis-epoxycarotenoid dioxygenase NCED6, chloroplastic; Has a 11,12(11',12') 9-cis epoxycarotenoid cleavage activity. Catalyzes the first step of abscisic-acid biosynthesis from carotenoids. Contributes probably to abscisic acid synthesis for the induction of seed dormancy. (577 aa) | ||||
NCED3 | 9-cis-epoxycarotenoid dioxygenase NCED3, chloroplastic; Has a 11,12(11',12') 9-cis epoxycarotenoid cleavage activity. Catalyzes the first step of abscisic-acid biosynthesis from carotenoids, in response to water stress. (599 aa) | ||||
ASK10-2 | SKP1-like protein 10; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity). (152 aa) | ||||
ASK7-2 | SKP1-like protein 7; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity). (125 aa) | ||||
ASK8-2 | SKP1-like protein 8; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity). (152 aa) | ||||
CKX3 | Cytokinin dehydrogenase 3; Catalyzes the oxidation of cytokinins, a family of N(6)- substituted adenine derivatives that are plant hormones, where the substituent is an isopentenyl group. (523 aa) | ||||
TTL-2 | 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase; Involved in the last two steps of the degradation of uric acid, i.e. the hydrolysis of 5-hydroxyisourate (HIU) to 2-oxo-4- hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and its stereoselective decarboxylation to (S)-allantoin. Might function as a negative regulator to modulate brassinosteroid-mediated plant growth; In the C-terminal section; belongs to the transthyretin family. 5-hydroxyisourate hydrolase subfamily. (324 aa) | ||||
T24H18.80 | Histone H3-like 4; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity). (131 aa) | ||||
WRKY70 | Probable WRKY transcription factor 70; Transcription factor involved in senescence, biotic and abiotic stress responses by modulating various phytohormones signaling pathways. Interacts specifically with the W box (5'- (T)TGAC[CT]-3'), a frequently occurring elicitor-responsive cis-acting element (By similarity). Binds to the 5'-[CT]GACTTTT-3' motif in promoters of target genes to induce their expression. Plays an important but not indispensable role in jasmonate and salicylic acid signaling. Regulates positively the salicylic acid (SA)-mediated signal pathway, but negatively the jasmo [...] (294 aa) | ||||
CYP90C1 | 3-epi-6-deoxocathasterone 23-monooxygenase CYP90C1; Involved in brassinosteroid (BR) biosynthesis. Converts typhasterol to castasterone and 6-deoxotyphasterol to 6-deoxocastasterone. C-23 hydroxylase that converts directly (22S,24R)- 22-hydroxy-5-alpha-ergostan-3-one and 3-epi-6-deoxocathasterone to 3- dehydro-6-deoxoteasterone and 6-deoxotyphasterol, respectively. These C-23 hydroxylation shortcuts bypass campestanol, 6-deoxocathasterone, and 6-deoxoteasterone. Required for the regulation of polar elongation of leaf cells. Required for the longitudinal elongation of floral organs. (524 aa) | ||||
SCPL24 | Serine carboxypeptidase 24 chain A; Active serine carboxypeptidase with broad substrate preference, including basic and hydrophilic groups. Processes a protein involved in an early event in the brassinosteroid signaling pathway. (465 aa) | ||||
ASK5-2 | SKP1-like protein 5; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity); Belongs to the SKP1 family. (153 aa) | ||||
ASK13 | SKP1-like protein 13; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity). (154 aa) | ||||
RBX1B | RING-box protein 1b; Component of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex, which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. The SCF complex plays a crucial role in regulating response to auxin and is essential for growth and development. Through the RING-type zinc finger, seems to recruit the E2 ubiquitination enzyme, to the complex and brings it into close proximity to the substrate (By similarity); Belongs to the RING-box family. (115 aa) | ||||
ACS9 | 1-aminocyclopropane-1-carboxylate synthase 9; 1-aminocyclopropane-1-carboxylate synthase (ACS) enzymes catalyze the conversion of S-adenosyl-L-methionine (SAM) into 1- aminocyclopropane-1-carboxylate (ACC), a direct precursor of ethylene; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (470 aa) | ||||
NCED9 | 9-cis-epoxycarotenoid dioxygenase NCED9, chloroplastic; Has a 11,12(11',12') 9-cis epoxycarotenoid cleavage activity. Catalyzes the first step of abscisic-acid biosynthesis from carotenoids. Contributes probably to abscisic acid synthesis for the induction of seed dormancy. (657 aa) | ||||
PIN3 | Auxin efflux carrier component 3; Acts as a component of the auxin efflux carrier. Seems to be involved in the lateral auxin transport system and mediates tropic growth. Coordinated polar localization of PIN3 is directly regulated by the vesicle trafficking process. (640 aa) | ||||
EIN2 | Ethylene-insensitive protein 2; Central factor in signaling pathways regulated by ethylene (ET), and involved in various processes including development, plant defense, senescence, nucleotide sugar flux, and tropisms. Necessary for ethylene-mediated gene regulation, and for the induction of some genes by ozone. Acts downstream of ET receptors, and upstream of ethylene regulated transcription factors. Required for cytokinin-mediated processes. Seems to be implicated in cross-talk between ET, jasmonate and other pathways. Probably not involved in iron uptake. Has a short half-life and un [...] (1294 aa) | ||||
ACS11 | 1-aminocyclopropane-1-carboxylate synthase 11; 1-aminocyclopropane-1-carboxylate synthase (ACS) enzymes catalyze the conversion of S-adenosyl-L-methionine (SAM) into 1- aminocyclopropane-1-carboxylate (ACC), a direct precursor of ethylene; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (460 aa) | ||||
GLK1 | Transcription activator GLK1; Transcriptional activator that functions with GLK2 to promote chloroplast development. Acts as an activator of nuclear photosynthetic genes involved in chlorophyll biosynthesis, light harvesting, and electron transport. Acts in a cell-autonomous manner to coordinate and maintain the photosynthetic apparatus within individual cells. May function in photosynthetic capacity optimization by integrating responses to variable environmental and endogenous cues. Prevents premature senescence. (420 aa) | ||||
PAR1 | Transcription factor PAR1; Atypical bHLH transcription factor that acts as negative regulator of a variety of shade avoidance syndrome (SAS) responses, including seedling elongation and photosynthetic pigment accumulation. Acts as direct transcriptional repressor of two auxin-responsive genes, SAUR15 and SAUR68. May function in integrating shade and hormone transcriptional networks in response to light and auxin changes. (118 aa) | ||||
ABI5 | Protein ABSCISIC ACID-INSENSITIVE 5; Participates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans- activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. Belongs to the bZIP family. ABI5 subfamily. (442 aa) | ||||
IBH1 | Transcription factor IBH1; Atypical and probable non DNA-binding bHLH transcription factor that acts as transcriptional repressor that negatively regulates cell and organ elongation in response to gibberellin (GA) and brassinosteroid (BR) signaling. Is able to form heterodimer with BHLH49, thus inhibiting DNA binding of BHLH49, which is a transcriptional activator that regulates the expression of a subset of genes involved in cell expansion by binding to the G-box motif. Binds and inhibits HBI1, a positive regulator of cell elongation that directly binds to the promoters and activated [...] (156 aa) | ||||
ASK17 | SKP1-like protein 17; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity). Probably implicated in incompatibility response after hybridization. (150 aa) | ||||
ASK3-2 | SKP1-like protein 3; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity); Belongs to the SKP1 family. (163 aa) | ||||
RGA | DELLA protein RGA; Probable transcriptional regulator that acts as a repressor of the gibberellin (GA) signaling pathway. Probably acts by participating in large multiprotein complexes that repress transcription of GA-inducible genes. Positively regulates XERICO expression in seeds. Upon GA application, it is degraded by the proteasome, allowing the GA signaling pathway. Compared to other DELLA proteins, it is the most sensitive to GA application. No effect of the BOI proteins on its stability. Its activity is probably regulated by other phytohormones such as auxin and ethylene, attenu [...] (587 aa) | ||||
BGLU23 | Beta-glucosidase 23; Beta-D-glucosidase active on scopolin > esculin >> 4-MU- glucoside >> DIMBOA-glucoside. No activity with pNP-glucoside, oNP- glucoside and sinigrin as substrates. May possess beta-D-fucosidase activity. Required for the beneficial interaction with the endophytic fungus P.indica. May participate in the control of root colonization by P.indica by repressing defense responses and modulating other responses required for a mutualistic interaction. (524 aa) | ||||
REF6 | Lysine-specific demethylase REF6; Histone demethylase that demethylates 'Lys-27' (H3K27me) of histone H3. Demethylates both tri- (H3K27me3) and di-methylated (H3K27me2) H3K27me. Demethylates also H3K4me3/2 and H3K36me3/2 in an in vitro assay. Involved in the transcriptional regulation of hundreds of genes regulating developmental patterning and responses to various stimuli. Binds DNA via its four zinc fingers in a sequence- specific manner, 5'-CTCTGYTY-3', to promote the demethylation of H3K27me3 and the regulation of organ boundary formation. Involved in the regulation of flowering ti [...] (1360 aa) | ||||
ACS7 | 1-aminocyclopropane-1-carboxylate synthase 7; 1-aminocyclopropane-1-carboxylate synthase (ACS) enzymes catalyze the conversion of S-adenosyl-L-methionine (SAM) into 1- aminocyclopropane-1-carboxylate (ACC), a direct precursor of ethylene. (447 aa) | ||||
GA3OX3 | Gibberellin 3-beta-dioxygenase 3; Converts the inactive gibberellin (GA) precursors GA9 and GA20 in the bioactives gibberellins GA4 and GA1. Involved in the production of bioactive GA for reproductive development. Belongs to the iron/ascorbate-dependent oxidoreductase family. GA3OX subfamily. (349 aa) | ||||
ASK18 | SKP1-like protein 18; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1 (By similarity); Belongs to the SKP1 family. (158 aa) | ||||
BAT1 | Brassinosteroid-related acyltransferase 1; Brassinosteroids (BR) acyltransferase with acyl-CoA ligase activity toward brassinolide (BL), castasterone (CS), typhasterol (TY), 6-deoxotyphasterol (6-deoxoTY), and 6-deoxocastasterone (6-deoxoCS) and thus converts them to corresponding lauroyl esters. Regulates BR homeostasis and promotes BR-mediated cell growth regulation. Involved in vascular bundle development. (458 aa) | ||||
ACS8 | 1-aminocyclopropane-1-carboxylate synthase 8; 1-aminocyclopropane-1-carboxylate synthase (ACS) enzymes catalyze the conversion of S-adenosyl-L-methionine (SAM) into 1- aminocyclopropane-1-carboxylate (ACC), a direct precursor of ethylene. (469 aa) | ||||
BRH1 | Brassinosteroid-responsive RING protein 1; May be involved in the brassinosteroids (BRs) signaling pathway and regulate the growth and development of rosette leaves. Seems to prevent over development of leaves and inflorescence stems. (170 aa) | ||||
BRL2 | Serine/threonine-protein kinase BRI1-like 2; Receptor with a serine/threonine-protein kinase activity, which may transduce extracellular spatial and temporal signals into downstream cell differentiation responses in provascular and procambial cells. In contrast to BRI1, BRL1 and BRL3, it does not bind brassinolide. (1143 aa) | ||||
UGT73C5 | UDP-glycosyltransferase 73C5; Specifically catalyzes 23-O-glucosylation of brassinosteroids, resulting probably in their inactivation. Also, involved in the O-glucosylation of trans-zeatin and dihydrozeatin. Active in vitro on cis-zeatin, dihydrozeatin-9-N-Glc, and olomoucine. Also involved in the detoxification of the Fusarium mycotoxin deoxynivalenol by the transfer of glucose from UDP-glucose to the hydroxyl group at C-3. Possesses low quercetin 7-O-glucosyltransferase and 4'-O-glucosyltransferase activities in vitro. Belongs to the UDP-glycosyltransferase family. (495 aa) | ||||
UGT73C6 | UDP-glycosyltransferase 73C6; Acts as a UDP-glucose:flavonol-3-O-glycoside-7-O- glucosyltransferase. 6- and 7-hydroxyflavone, but not 3- or 5- hydroxyflavone are accepted as substrates. Possesses low quercetin 3-O- glucosyltransferase, 7-O-glucosyltransferase and 4'-O- glucosyltransferase activities in vitro; Belongs to the UDP-glycosyltransferase family. (495 aa) | ||||
GA3OX2 | Gibberellin 3-beta-dioxygenase 2; Converts the inactive gibberellin (GA) precursors GA9 and GA20 in the bioactives gibberellins GA4 and GA1. Involved in the production of bioactive GA for vegetative growth and development. Belongs to the iron/ascorbate-dependent oxidoreductase family. GA3OX subfamily. (347 aa) | ||||
ARR2 | Two-component response regulator ARR2; Transcriptional activator that binds specifically to the DNA sequence 5'-[AG]GATT-3'. Functions as a response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Could directly activate some type-A response regulators in response to cytokinins. Involved in the expression of nuclear genes for components of mitochondrial complex I. Promotes cytokinin-mediated leaf longevity. Involved in th [...] (664 aa) | ||||
RAV1 | AP2/ERF and B3 domain-containing transcription factor RAV1; Binds specifically to bipartite recognition sequences composed of two unrelated motifs, 5'-CAACA-3' and 5'-CACCTG-3'. May function as negative regulator of plant growth and development. Belongs to the AP2/ERF transcription factor family. RAV subfamily. (344 aa) |