Your Input: | |||||
A0A1P8B2A8 | Long chain acyl-CoA synthetase. (130 aa) | ||||
ABI4 | Ethylene-responsive transcription factor ABI4; Transcription regulator that probably binds to the GCC-box pathogenesis-related promoter element. Binds also to the S-box (5'- CACTTCCA-3') photosynthesis-associated nuclear genes-related (PhANGs- related) promoter element, and thus acts as a transcription inhibitor. Involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways. May have a function in the deetiolation process. Confers sensitivity to abscisic acid (ABA), and regulates the ABA signaling pathway during seed germinatio [...] (328 aa) | ||||
FAB2 | Stearoyl-[acyl-carrier-protein] 9-desaturase 7, chloroplastic; Converts stearoyl-ACP to oleoyl-ACP by introduction of a cis double bond between carbons 9 and 10 of the acyl chain. Required for the activation of certain jasmonic acid (JA)-mediated responses and the repression of the salicylic acid (SA) signaling pathway. Belongs to the fatty acid desaturase type 2 family. (401 aa) | ||||
LACS1 | Long chain acyl-CoA synthetase 1; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Acts in both the wax and cutin pathways. Preferentially uses palmitate, palmitoleate, linoleate and eicosenoate. Seems to have a specific activity against very long-chain fatty acid (VLCFA) class with acids longer than 24 carbons (C(24)). (660 aa) | ||||
GPAT6 | Glycerol-3-phosphate 2-O-acyltransferase 6; Esterifies acyl-group from acyl-ACP to the sn-2 position of glycerol-3-phosphate, a step in cutin biosynthesis. Belongs to the GPAT/DAPAT family. (501 aa) | ||||
A1 | Elongation factor 1-alpha 1; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (449 aa) | ||||
RAP2-3 | Ethylene-responsive transcription factor RAP2-3; Probably acts as a transcriptional activator. Binds to the GCC-box pathogenesis-related promoter element. May be involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways (By similarity); Belongs to the AP2/ERF transcription factor family. ERF subfamily. (248 aa) | ||||
FAD7 | Sn-2 acyl-lipid omega-3 desaturase (ferredoxin), chloroplastic; Chloroplast omega-3 fatty acid desaturase introduces the third double bond in the biosynthesis of 16:3 and 18:3 fatty acids, important constituents of plant membranes. It is thought to use ferredoxin as an electron donor and to act on fatty acids esterified to galactolipids, sulfolipids and phosphatidylglycerol. (446 aa) | ||||
FAD6 | Omega-6 fatty acid desaturase, chloroplastic; Chloroplast omega-6 fatty acid desaturase introduces the second double bond in the biosynthesis of 16:3 and 18:3 fatty acids, important constituents of plant membranes. It is thought to use ferredoxin as an electron donor and to act on fatty acids esterified to galactolipids, sulfolipids and phosphatidylglycerol. (448 aa) | ||||
FAD2 | Delta(12)-fatty-acid desaturase; ER (microsomal) omega-6 fatty acid desaturase introduces the second double bond in the biosynthesis of 18:3 fatty acids, important constituents of plant membranes. Delta(12)-desaturase with regioselectivity determined by the double bond (delta(9) position) and carboxyl group of the substrate. Can use both 16:1 and 18:1 fatty acids as substrates. It is thought to use cytochrome b5 as an electron donor and to act on fatty acids esterified to phosphatidylcholine (PC) and, possibly, other phospholipids. Very low constitutive hydroxylation activity. Required [...] (383 aa) | ||||
FAD8 | Temperature-sensitive sn-2 acyl-lipid omega-3 desaturase (ferredoxin), chloroplastic; Chloroplast omega-3 fatty acid desaturase introduces the third double bond in the biosynthesis of 16:3 and 18:3 fatty acids, important constituents of plant membranes. It is thought to use ferredoxin as an electron donor and to act on fatty acids esterified to galactolipids, sulfolipids and phosphatidylglycerol. (435 aa) | ||||
FAD3 | Acyl-lipid omega-3 desaturase (cytochrome b5), endoplasmic reticulum; Microsomal (ER) omega-3 fatty acid desaturase introduces the third double bond in the biosynthesis of 18:3 fatty acids, important constituents of plant membranes. It is thought to use cytochrome b5 as an electron donor and to act on fatty acids esterified to phosphatidylcholine and, possibly, other phospholipids. (386 aa) | ||||
KAS1 | 3-oxoacyl-[acyl-carrier-protein] synthase I, chloroplastic; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Specific for elongation from C-10 to unsaturated C-16 and C-18 fatty acids (By similarity). (473 aa) | ||||
ABI3 | B3 domain-containing transcription factor ABI3; Participates in abscisic acid-regulated gene expression during seed development. Regulates the transcription of SGR1 and SGR2 that are involved in leaf and embryo degreening. (720 aa) | ||||
LEC2 | B3 domain-containing transcription factor LEC2; Transcription regulator that plays a central role in embryo development. Required for the maintenance of suspensor morphology, specification of cotyledon identity, progression through the maturation phase and suppression of premature germination. Ectopic expression is sufficient to promote somatic embryogenesis. (363 aa) | ||||
FATA | Oleoyl-acyl carrier protein thioesterase 1, chloroplastic; Plays an essential role in chain termination during de novo fatty acid synthesis. Possesses high thioesterase activity for oleoyl- ACP versus other acyl-ACPs. Substrate preference is 18:1 > 18:0 > 16:1. (362 aa) | ||||
ATS1 | Glycerol-3-phosphate acyltransferase, chloroplastic; Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate. The enzyme from chilling-resistant plants discriminates against non-fluid palmitic acid and selects oleic acid whereas the enzyme from sensitive plants accepts both fatty acids. This is an oleate-selective acyltransferase. (459 aa) | ||||
LPAT2 | 1-acyl-sn-glycerol-3-phosphate acyltransferase 2; Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating acyl moiety at the 2 position. Has preference for C- 18-CoA substrates compared to C-16-CoA substrates. Required for female but not male gametophyte development. (389 aa) | ||||
LACS7 | Long chain acyl-CoA synthetase 7, peroxisomal; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate, linoleate and eicosenoate. Displays redundant function with LACS7 into the seed development process (By similarity). (700 aa) | ||||
LACS6 | Long chain acyl-CoA synthetase 6, peroxisomal; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate, linoleate and eicosenoate. Might play a regulatory role both in fatty acid import into glyoxysomes and in fatty acid beta-oxidation. Displays redundant function with LACS7 into the seed development process. (701 aa) | ||||
AAE15 | Long-chain-fatty-acid--[acyl-carrier-protein] ligase AEE15, chloroplastic; Probably involved in the activation of fatty acids to acyl- carrier-protein prior to fatty acid elongation in plastids. Acts on medium- to long-chain fatty acids. (727 aa) | ||||
ADS3 | Palmitoyl-monogalactosyldiacylglycerol delta-7 desaturase, chloroplastic; Fatty acid desaturase involved in the first desaturation step leading to the formation of hexadeca 7,10,13-trienoic acid (16:3(7Z,10Z,13Z)), the major functional components of thylakoid membranes. Required for chloroplast biogenesis at low temperature. Also indirectly involved in the production of the oxylipin dinor-oxo-phyto- dienoic acid implicated in wound signaling. (371 aa) | ||||
DGAT3 | Diacylglycerol O-acyltransferase 3; Involved in triacylglycerol (TAG) biosynthesis. Catalyzes the acylation of the sn-3 hydroxy group of sn-1,2-diacylglycerol using acyl-CoA. May preferentially use linolenoyl-CoA as substrate and to a lesser extent linoleoyl-CoA. May contribute to the active recycling of linoleate and linolenate into TAG when seed oil breakdown is blocked. (360 aa) | ||||
LACS3 | Long chain acyl-CoA synthetase 3; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate; Belongs to the ATP-dependent AMP-binding enzyme family. (665 aa) | ||||
LACS9 | Long chain acyl-CoA synthetase 9, chloroplastic; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate. (691 aa) | ||||
PGD3 | 6-phosphogluconate dehydrogenase, decarboxylating 3, chloroplastic; Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. (487 aa) | ||||
PDAT1 | Phospholipid:diacylglycerol acyltransferase 1; Triacylglycerol formation by an acyl-CoA independent pathway. The enzyme preferentially transfers acyl groups from the sn-2 position of a phospholipid to diacylglycerol, thus forming an sn-1- lysophospholipid. Involved in epoxy and hydroxy fatty acid accumulation in seeds. Has complementary functions with DAG1 that are essential for triacylglycerol synthesis and normal development of both seeds and pollen. (671 aa) | ||||
PGD2 | 6-phosphogluconate dehydrogenase, decarboxylating 2; Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. Required for guided growth of the male gametophytes and interaction between the pollen tube and the ovule. (486 aa) | ||||
GPAT2 | Probable glycerol-3-phosphate acyltransferase 2; Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate, an essential step in glycerolipid biosynthesis. Belongs to the GPAT/DAPAT family. (530 aa) | ||||
LPAT5 | Probable 1-acyl-sn-glycerol-3-phosphate acyltransferase 5; May convert lysophosphatidic acid (LPA) into phosphatidic acid by incorporating acyl moiety at the 2 position (By similarity). Has no activity when expressed in bacteria or yeast. (375 aa) | ||||
GPAT7 | Glycerol-3-phosphate acyltransferase 7; Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate, an essential step in glycerolipid biosynthesis. (500 aa) | ||||
AAE16 | Probable acyl-activating enzyme 16, chloroplastic; May be involved in the activation of fatty acids to acyl- carrier-protein; Belongs to the ATP-dependent AMP-binding enzyme family. (722 aa) | ||||
FUS3 | B3 domain-containing transcription factor FUS3; Transcription regulator involved in gene regulation during late embryogenesis. Its expression to the epidermis is sufficient to control foliar organ identity by regulating positively the synthesis abscisic acid (ABA) and negatively gibberellin production. Negatively regulates TTG1 in the embryo. Positively regulates the abundance of the ABI3 protein in the seed. Cooperates with KIN10 to regulate developmental phase transitions and lateral organ development and act both as positive regulators of abscisic acid (ABA) signaling during germination. (313 aa) | ||||
MYB30 | Transcription factor MYB30; Transcription factor that binds specifically to the DNA sequence 5'-AACAAAC-3'. Acts as a positive regulator of hypersensitive cell death. Acts as a positive regulator of salicylic acid synthesis. Regulates very-long-chain fatty acid biosynthesis. Acts cooperatively with BZR2 to promote expression of a subset of brassinosteroids target genes. Transcriptional activity and hypersensitive response control negatively regulated by PLA2-ALPHA and by the Xanthomonas type III effector XopD (AC G9L9K6). Involved in the regulation of abscisic acid (ABA) signaling. Inc [...] (323 aa) | ||||
NFYB9 | Nuclear transcription factor Y subunit B-9; Component of the NF-Y/HAP transcription factor complex. The NF-Y complex stimulates the transcription of various genes by recognizing and binding to a CCAAT motif in promoters. Acts as a central regulator of the embryogenesis. Required for the speciation of cotyledon identity and the completion of embryo maturation. Controls seed storage protein genes through the regulation of FUS3 and ABI3. Involved in the blue light (BL) and abscisic acid (ABA) signaling pathways; Belongs to the NFYB/HAP3 subunit family. (238 aa) | ||||
PGD1 | 6-phosphogluconate dehydrogenase, decarboxylating 1, chloroplastic; Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. (487 aa) | ||||
LACS8 | Long chain acyl-CoA synthetase 8; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate; Belongs to the ATP-dependent AMP-binding enzyme family. (720 aa) | ||||
FATB | Palmitoyl-acyl carrier protein thioesterase, chloroplastic; Plays an essential role in chain termination during de novo fatty acid synthesis. Possesses high thioesterase activity for palmitoyl-ACP versus other acyl-ACPs. Substrate preference is 16:0 > 18:1 > 18:0 > 16:1. Plays an essential role in the supply of saturated fatty acids necessary for plant growth and seed development. Contributes to 16:0 production particularly in flowers. May be involved in the synthesis of long chain fatty acid. (412 aa) | ||||
DGAT1 | Diacylglycerol O-acyltransferase 1; Major contributor to triacylglycerol (TAG) synthesis and oil accumulation in seeds. Catalyzes the acylation of the sn-3 hydroxy group of sn-1,2-diacylglycerol using acyl-CoA. Can use palmitoyl-CoA and oleoyl-CoA as substrates. Can use oleoyl-CoA and linoleoyl-CoA as substrates. Has substrate preference for oleoyl-CoA compared to linoleoyl-CoA. Has complementary functions with PDAT1 that are essential for triacylglycerol synthesis and normal development of both seeds and pollen. (520 aa) | ||||
FAD4 | Fatty acid desaturase 4, chloroplastic; Fatty acid desaturase involved in the production of chloroplast-specific phosphatidylglycerol molecular species containing 16:1(3E). Catalyzes the formation of a trans double bond introduced close to the carboxyl group of palmitic acid, which is specifically esterified to the sn-2 glyceryl carbon of phosphatidylglycerol. (323 aa) | ||||
LACS5 | Long chain acyl-CoA synthetase 5; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate; Belongs to the ATP-dependent AMP-binding enzyme family. (666 aa) | ||||
LACS4 | Long chain acyl-CoA synthetase 4; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate; Belongs to the ATP-dependent AMP-binding enzyme family. (666 aa) | ||||
LACS2 | Long chain acyl-CoA synthetase 2; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Acts in the cutin pathway. Preferentially uses palmitate, palmitoleate, oleate and linoleate. Required for repression of lateral root formation through its role in cutin biosynthesis and subsequent aerial tissues permeability. Belongs to the ATP-dependent AMP-binding enzyme family. (665 aa) |