STRINGSTRING
NPC4 NPC4 PAH1 PAH1 PLMT PLMT NPC5 NPC5 PLA1 PLA1 ARP1 ARP1 ACT7 ACT7 RPS27AC RPS27AC THY-1 THY-1 THY-2 THY-2 ATS1 ATS1 LPAT2 LPAT2 DGAT2 DGAT2 WSD1 WSD1 DGAT3 DGAT3 NMT1 NMT1 LPLAT2 LPLAT2 PDAT1 PDAT1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
NPC4Non-specific phospholipase C4; Non-specific phospholipase C (PLC) which assumes major PLC activity during inorganic phosphate starvation. Substrate preference is phosphatidylcholine (PC), but can also hydrolyze phosphatidylethanolamine (PE) with lower efficiency. Has no activity toward phosphatidic acid (PA). Plays an important role in the supply of both inorganic phosphate and diacylglycerol from membrane-localized phospholipids during phosphate deprivation. May be required for lipid- derived signaling molecules that positively modulate abscisic acid (ABA) response and promote plant t [...] (538 aa)
PAH1Phosphatidate phosphatase PAH1; Magnesium-dependent phosphatidate phosphatase which catalyzes the dephosphorylation of phosphatidate to yield diacylglycerol. Acts redundantly with PAH2 to repress phospholipid biosynthesis at the endoplasmic reticulum (ER). May function indirectly as repressor of multiple enzymes involved in phospholipid biosynthesis. Is involved in the pathway of galactolipid synthesis in the ER, which is required for the membrane lipid remodeling, an essential adaptation mechanism to cope with phosphate starvation; Belongs to the lipin family. (904 aa)
PLMTPhosphatidyl-N-methylethanolamine N-methyltransferase; Catalyzes the second two steps of the methylation pathway of phosphatidylcholine biosynthesis, the SAM-dependent methylation of phosphatidylmonomethylethanolamine (PMME) to phosphatidyldimethylethanolamine (PDME) and of PDME to phosphatidylcholine (PC); Belongs to the class VI-like SAM-binding methyltransferase superfamily. PEMT/PEM2 methyltransferase family. (164 aa)
NPC5Non-specific phospholipase C5; Non-specific phospholipase C (PLC) which assumes minor PLC activity during inorganic phosphate starvation. Can hydrolyze both phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Required for normal accumulation of digalactosyldiacylglycerol (DGDG) during phosphate limitation and may contribute to the conversion of phospholipids to diacylglycerol, the substrate for galactolipid synthesis. (521 aa)
PLA1Phospholipase A I; Possesses non-specific lipolytic acyl hydrolase (LAH) activity. Catalyzes the hydrolysis of the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), and less efficiently the phoshpolipids phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylserine (PS) and phosphatidylinositol (PI). Hydrolyzes phospholipids at both the sn-1 and sn-2 positions. Involved in basal jasmonic acid production and promotes resistance to the necrotrophic fungal pathogen Botrytis cinerea. (1309 aa)
ARP160S ribosomal protein L3-1; Belongs to the universal ribosomal protein uL3 family. (389 aa)
ACT7Actin-7; Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. Essential component of cell cytoskeleton; plays an important role in cytoplasmic streaming, cell shape determination, cell division, organelle movement and extension growth. This is considered as one of the vegetative actins which is involved in the regulation of hormone-induced plant cell proliferation and callus formation. (377 aa)
RPS27ACUbiquitin-40S ribosomal protein S27a-3; Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-11-linked is invol [...] (157 aa)
THY-1Bifunctional dihydrofolate reductase-thymidylate synthase 1; Bifunctional enzyme. Involved in de novo dTMP biosynthesis. Key enzyme in folate metabolism. Can play two different roles depending on the source of dihydrofolate: de novo synthesis of tetrahydrofolate or recycling of the dihydrofolate released as one of the end products of the TS catalyzed reaction. Catalyzes an essential reaction for de novo glycine and purine synthesis, DNA precursor synthesis, and for the conversion of dUMP to dTMP. (519 aa)
THY-2Bifunctional dihydrofolate reductase-thymidylate synthase 2; Bifunctional enzyme. Involved in de novo dTMP biosynthesis. Key enzyme in folate metabolism. Can play two different roles depending on the source of dihydrofolate: de novo synthesis of tetrahydrofolate or recycling of the dihydrofolate released as one of the end products of the TS catalyzed reaction. Catalyzes an essential reaction for de novo glycine and purine synthesis, DNA precursor synthesis, and for the conversion of dUMP to dTMP; In the C-terminal section; belongs to the thymidylate synthase family. (565 aa)
ATS1Glycerol-3-phosphate acyltransferase, chloroplastic; Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate. The enzyme from chilling-resistant plants discriminates against non-fluid palmitic acid and selects oleic acid whereas the enzyme from sensitive plants accepts both fatty acids. This is an oleate-selective acyltransferase. (459 aa)
LPAT21-acyl-sn-glycerol-3-phosphate acyltransferase 2; Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating acyl moiety at the 2 position. Has preference for C- 18-CoA substrates compared to C-16-CoA substrates. Required for female but not male gametophyte development. (389 aa)
DGAT2Diacylglycerol O-acyltransferase 2; Involved in triacylglycerol (TAG) synthesis. Catalyzes the acylation of the sn-3 hydroxy group of sn-1,2-diacylglycerol using acyl-CoA. Can use oleoyl-CoA, linoleoyl-CoA and linolenoyl-CoA as substrates. Has substrate preference for linolenoyl-CoA or oleoyl-CoA compared to linoleoyl-CoA. (314 aa)
WSD1O-acyltransferase WSD1; Bifunctional wax ester synthase/diacylglycerol acyltransferase. Involved in cuticular wax biosynthesis. In the N-terminal section; belongs to the long-chain O- acyltransferase family. (481 aa)
DGAT3Diacylglycerol O-acyltransferase 3; Involved in triacylglycerol (TAG) biosynthesis. Catalyzes the acylation of the sn-3 hydroxy group of sn-1,2-diacylglycerol using acyl-CoA. May preferentially use linolenoyl-CoA as substrate and to a lesser extent linoleoyl-CoA. May contribute to the active recycling of linoleate and linolenate into TAG when seed oil breakdown is blocked. (360 aa)
NMT1Phosphoethanolamine N-methyltransferase 1; Catalyzes N-methylation of phosphoethanolamine, phosphomonomethylethanolamine and phosphodimethylethanolamine, the three methylation steps required to convert phosphoethanolamine to phosphocholine. Required for root system development and epidermal cell integrity through its role in choline and phospholipid metabolism. (491 aa)
LPLAT2Lysophospholipid acyltransferase 2; Lysophospholipid acyltransferase with broad specificity. Mediates the conversion of lysophosphatidylethanolamine (1-acyl-sn- glycero-3-phosphoethanolamine or LPE) into phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine or PE) (LPEAT activity). Catalyzes the acylation of lysophosphatidylserine (1-acyl-2-hydroxy-sn- glycero-3-phospho-L-serine or LPS) into phosphatidylserine (1,2-diacyl- sn-glycero-3-phospho-L-serine or PS) (LPSAT activity). Can convert lysophosphatidylcholine (1-acyl-sn-glycero-3-phosphocholine or LPC) into phosphati [...] (465 aa)
PDAT1Phospholipid:diacylglycerol acyltransferase 1; Triacylglycerol formation by an acyl-CoA independent pathway. The enzyme preferentially transfers acyl groups from the sn-2 position of a phospholipid to diacylglycerol, thus forming an sn-1- lysophospholipid. Involved in epoxy and hydroxy fatty acid accumulation in seeds. Has complementary functions with DAG1 that are essential for triacylglycerol synthesis and normal development of both seeds and pollen. (671 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (16%) [HD]