Your Input: | |||||
AHA1 | ATPase 1, plasma membrane-type; The plasma membrane H(+) ATPase of plants and fungi generates a proton gradient that drives the active transport of nutrients by H(+)-symport. The resulting external acidification and/or internal alkinization may mediate growth responses. Forms a functional cation- translocating unit with CNGC17 that is activated by PSKR1/BAK1 and possibly other BAK1/RLK complexes. (949 aa) | ||||
AHA2 | ATPase 2, plasma membrane-type; The plasma membrane H(+) ATPase of plants and fungi generates a proton gradient that drives the active transport of nutrients by H(+)-symport. The resulting external acidification and/or internal alkinization may mediate growth responses. Involved in maintaining the membrane potential and delta-pH, together forming the plasma membrane protonmotive force (PMF) required for root and hypocotyl elongation and root tropism. Important for root growth and development during different nitrogen regimes. Forms a functional cation-translocating unit with CNGC17 tha [...] (948 aa) | ||||
AHA3 | ATPase 3, plasma membrane-type; The plasma membrane H(+) ATPase of plants and fungi generates a proton gradient that drives the active transport of nutrients by H(+)-symport. The resulting external acidification and/or internal alkinization may mediate growth responses; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIIA subfamily. (949 aa) | ||||
AHA10 | ATPase 10, plasma membrane-type; The plasma membrane H(+) ATPase of plants and fungi generates a proton gradient that drives the active transport of nutrients by H(+)-symport. The resulting external acidification and/or internal alkinization may mediate growth responses; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIIA subfamily. (947 aa) | ||||
ACT2 | Actin-2; Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. Essential component of cell cytoskeleton; plays an important role in cytoplasmic streaming, cell shape determination, cell division, organelle movement and extension growth. This is considered as one of the vegetative actins. (377 aa) | ||||
AHA11 | ATPase 11, plasma membrane-type; The plasma membrane H(+) ATPase of plants and fungi generates a proton gradient that drives the active transport of nutrients by H(+)-symport. The resulting external acidification and/or internal alkinization may mediate growth responses (By similarity). Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIIA subfamily. (956 aa) | ||||
AHA7 | ATPase 7, plasma membrane-type; The plasma membrane H(+) ATPase of plants and fungi generates a proton gradient that drives the active transport of nutrients by H(+)-symport. The resulting external acidification and/or internal alkinization may mediate growth responses (By similarity). Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIIA subfamily. (961 aa) | ||||
GRF11 | 14-3-3-like protein GF14 omicron; Is associated with a DNA binding complex that binds to the G box, a well-characterized cis-acting DNA regulatory element found in plant genes. (252 aa) | ||||
AHA5 | ATPase 5, plasma membrane-type; The plasma membrane H(+) ATPase of plants and fungi generates a proton gradient that drives the active transport of nutrients by H(+)-symport. The resulting external acidification and/or internal alkinization may mediate growth responses (By similarity). Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIIA subfamily. (949 aa) | ||||
AHA4 | ATPase 4, plasma membrane-type; The plasma membrane H(+) ATPase of plants and fungi generates a proton gradient that drives the active transport of nutrients by H(+)-symport. The resulting external acidification and/or internal alkinization may mediate growth responses (By similarity). Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIIA subfamily. (960 aa) |