STRINGSTRING
YUC6 YUC6 A0A1I9LSE2 A0A1I9LSE2 LBD18 LBD18 IAA18 IAA18 IAA19 IAA19 YUC7 YUC7 YUC9 YUC9 ACT7 ACT7 ARF7 ARF7 IAA3 IAA3 IAA14 IAA14 TIR1 TIR1 ARF19 ARF19 PIN7 PIN7 AUX1 AUX1 ACT2 ACT2 LAX3 LAX3 ARF8 ARF8 YUC10 YUC10 ABCB19 ABCB19 YUC5 YUC5 AFB2 AFB2 LBD29 LBD29 TAA1 TAA1 PIN3 PIN3 LBD16 LBD16 YUC2 YUC2 YUC8 YUC8 YUC1 YUC1 ARF6 ARF6
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
YUC6Indole-3-pyruvate monooxygenase YUCCA6; Involved in auxin biosynthesis via the indole-3-pyruvic acid (IPA) pathway. Also able to convert in vitro phenyl pyruvate (PPA) to phenyl acetic acid (PAA). Required for the formation of floral organs and vascular tissues. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in shoots. (417 aa)
A0A1I9LSE2Cyclin B1. (100 aa)
LBD18LOB domain-containing protein 18; Involved in the positive regulation of tracheary element (TE) differentiation. Involved in a positive feedback loop that maintains or promotes NAC030/VND7 expression that regulates TE differentiation- related genes. Functions in the initiation and emergence of lateral roots, in conjunction with LBD16, downstream of ARF7 and ARF19. Transcriptional activator that directly regulates EXPA14, a gene encoding a cell wall- loosening factor that promotes lateral root emergence. Activates EXPA14 by directly binding to a specific region of its promoter. Transcri [...] (262 aa)
IAA18Auxin-responsive protein IAA18; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. (267 aa)
IAA19Auxin-responsive protein IAA19; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. (197 aa)
YUC7Probable indole-3-pyruvate monooxygenase YUCCA7; Involved in auxin biosynthesis. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in roots. (431 aa)
YUC9Probable indole-3-pyruvate monooxygenase YUCCA9; Involved in auxin biosynthesis. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in roots. (421 aa)
ACT7Actin-7; Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. Essential component of cell cytoskeleton; plays an important role in cytoplasmic streaming, cell shape determination, cell division, organelle movement and extension growth. This is considered as one of the vegetative actins which is involved in the regulation of hormone-induced plant cell proliferation and callus formation. (377 aa)
ARF7Auxin response factor 7; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Act as a transcriptional activator of several tropic stimulus-induced (TSI) genes, including SAUR50. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Required for differential growth responses of aerial tissues. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LB [...] (1164 aa)
IAA3Auxin-responsive protein IAA3; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Plays a central role in auxin regulation of root growth, in gravitropism, and in lateral root formation. Regulated by an auxin-induced protein turnover. Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response gene [...] (189 aa)
IAA14Auxin-responsive protein IAA14; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. (228 aa)
TIR1Protein TRANSPORT INHIBITOR RESPONSE 1; Auxin receptor that mediates Aux/IAA proteins proteasomal degradation and auxin-regulated transcription. The SCF(TIR1) E3 ubiquitin ligase complex is involved in auxin-mediated signaling pathway that regulate root and hypocotyl growth, lateral root formation, cell elongation, and gravitropism. Appears to allow pericycle cells to overcome G2 arrest prior to lateral root development. Plays a role in ethylene signaling in roots. Confers sensitivity to the virulent bacterial pathogen P.syringae. (594 aa)
ARF19Auxin response factor 19; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Could act as transcriptional activator or repressor. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LBD29. Functionally redundant with ARF7. (1086 aa)
PIN7Auxin efflux carrier component 7; Acts as a component of the auxin efflux carrier. Mediates the initial auxin gradient which contributes to the establishment of the apical-basal axis in early embryogenesis. (619 aa)
AUX1Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] (485 aa)
ACT2Actin-2; Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. Essential component of cell cytoskeleton; plays an important role in cytoplasmic streaming, cell shape determination, cell division, organelle movement and extension growth. This is considered as one of the vegetative actins. (377 aa)
LAX3Auxin transporter-like protein 3; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex (By similarity); Belongs to the amino acid/polyamine transporter 2 family. Amino acid/auxin permease (AAAP) (TC 2.A.18.1) subfamily. (470 aa)
ARF8Auxin response factor 8; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Seems to act as transcriptional activator. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Regulates both stamen and gynoecium maturation. Promotes jasmonic acid production. Partially redundant with ARF6. Involved in fruit initiation. Acts as an inhibitor to stop further carpel development in the absence of fertilizati [...] (811 aa)
YUC10Probable indole-3-pyruvate monooxygenase YUCCA10; Involved in auxin biosynthesis. Belongs to the FMO family. (383 aa)
ABCB19ABC transporter B family member 19; Auxin efflux transporter that acts as a negative regulator of light signaling to promote hypocotyl elongation. Mediates the accumulation of chlorophyll and anthocyanin, as well as the expression of genes in response to light. Participates in auxin efflux and thus regulates the polar auxin basipetal transport (from auxin-producing leaves to auxin-sensitive tissues, and from root tips to root elongating zone). Involved in diverse auxin-mediated responses including gravitropism, phototropism and lateral root formation. (1252 aa)
YUC5Probable indole-3-pyruvate monooxygenase YUCCA5; Involved in auxin biosynthesis. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in roots. (424 aa)
AFB2Protein AUXIN SIGNALING F-BOX 2; Component of SCF(ASK-cullin-F-box) E3 ubiquitin ligase complexes, which may mediate the ubiquitination and subsequent proteasomal degradation of target proteins. Confers sensitivity to the virulent bacterial pathogen P.syringae (By similarity). Auxin receptor that mediates Aux/IAA proteins proteasomal degradation and auxin- regulated transcription. Involved in embryogenesis regulation by auxin. (575 aa)
LBD29LOB domain-containing protein 29; Involved in lateral root formation. Regulated by the transcriptional activators ARF7 and ARF19. (218 aa)
TAA1L-tryptophan--pyruvate aminotransferase 1; L-tryptophan aminotransferase involved in auxin (IAA) biosynthesis. Can convert L-tryptophan and pyruvate to indole-3-pyruvic acid (IPA) and alanine. Catalyzes the first step in IPA branch of the auxin biosynthetic pathway. Required for auxin production to initiate multiple change in growth in response to environmental and developmental cues. It is also active with phenylalanine, tyrosine, leucine, alanine, methionine and glutamine. Both TAA1 and TAR2 are required for maintaining proper auxin levels in roots, while TAA1, TAR1 and TAR2 are requ [...] (391 aa)
PIN3Auxin efflux carrier component 3; Acts as a component of the auxin efflux carrier. Seems to be involved in the lateral auxin transport system and mediates tropic growth. Coordinated polar localization of PIN3 is directly regulated by the vesicle trafficking process. (640 aa)
LBD16LOB domain-containing protein 16; Transcriptional activator. Involved in lateral root formation. Regulated by the transcriptional activators ARF7 and ARF19. Functions in the initiation and emergence of lateral roots, in conjunction with LBD18, downstream of ARF7 and ARF19. Acts downstream of the auxin influx carriers AUX1 and LAX1 in the regulation of lateral root initiation and development. (245 aa)
YUC2Indole-3-pyruvate monooxygenase YUCCA2; Involved in auxin biosynthesis. Converts the indole-3-pyruvic acid (IPA) produced by the TAA family to indole-3-acetic acid (IAA). Unable to use tryptamine (TAM) as substrate. Required for the formation of floral organs and vascular tissues. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in shoots. (415 aa)
YUC8Probable indole-3-pyruvate monooxygenase YUCCA8; Involved in auxin biosynthesis. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in roots. (426 aa)
YUC1Probable indole-3-pyruvate monooxygenase YUCCA1; Involved in auxin biosynthesis, but not in the tryptamine or the CYP79B2/B3 branches. Catalyzes in vitro the N-oxidation of tryptamine to form N-hydroxyl tryptamine. Involved during embryogenesis and seedling development. Required for the formation of floral organs and vascular tissues. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in shoots. (414 aa)
ARF6Auxin response factor 6; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Seems to act as transcriptional activator. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Regulates both stamen and gynoecium maturation. Promotes jasmonic acid production. Partially redundant with ARF8. (935 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (34%) [HD]