STRINGSTRING
CCMFC CCMFC nad1 nad1 nad5 nad5 nad2 nad2 cox2 cox2 nad9 nad9 ccmFC ccmFC nad4 nad4 rpl2 rpl2 nad7 nad7 matR matR ND2 ND2 PHB1 PHB1 atpB atpB ND5 ND5 RPL8A RPL8A matK matK rpl2-A rpl2-A COX1 COX1 ND1 ND1 COX2 COX2 NAD7 NAD7 RPL2 RPL2 ND4 ND4 T25N20.10 T25N20.10 PPR336 PPR336 NFD3 NFD3 F6I1.13 F6I1.13 NAD9 NAD9 MTERF15 MTERF15 NMAT1 NMAT1 NMAT4 NMAT4 ABO6 ABO6 PHB7 PHB7 NMAT2 NMAT2 T1K7.17 T1K7.17 F14J16.14 F14J16.14 RH53 RH53 PHB6 PHB6 GRP23-2 GRP23-2 petC petC
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
CCMFCCytochrome c biogenesis CcmF C-terminal-like mitochondrial protein; Forms a complex with CCMFN1, CCMFN2 and CCMH that performs the assembly of heme with c-type apocytochromes in mitochondria. Belongs to the CcmF/CycK/Ccl1/NrfE/CcsA family. (442 aa)
nad1NADH-ubiquinone oxidoreductase chain 1; Belongs to the complex I subunit 1 family. (325 aa)
nad5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (669 aa)
nad2NADH dehydrogenase subunit 2. (488 aa)
cox2Cytochrome c oxidase subunit 2; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1. (260 aa)
nad9NADH dehydrogenase subunit 9; Belongs to the complex I 30 kDa subunit family. (190 aa)
ccmFCCytochrome c biogenesis FC. (442 aa)
nad4NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (495 aa)
rpl2Ribosomal protein L2. (349 aa)
nad7NADH dehydrogenase subunit 7; Belongs to the complex I 49 kDa subunit family. (394 aa)
matRMaturase. (656 aa)
ND2NADH-ubiquinone oxidoreductase chain 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (499 aa)
PHB1Prohibitin-1, mitochondrial; Prohibitin probably acts as a holdase/unfoldase for the stabilization of newly synthesized mitochondrial proteins. (288 aa)
atpBATP synthase subunit beta, chloroplastic; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (498 aa)
ND5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (669 aa)
RPL8A60S ribosomal protein L8-1. (258 aa)
matKMaturase K; Usually encoded in the trnK tRNA gene intron. Probably assists in splicing its own and other chloroplast group II introns. Belongs to the intron maturase 2 family. MatK subfamily. (504 aa)
rpl2-A50S ribosomal protein L2, chloroplastic; Belongs to the universal ribosomal protein uL2 family. (274 aa)
COX1Cytochrome c oxidase subunit 1; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and t [...] (527 aa)
ND1NADH-ubiquinone oxidoreductase chain 1; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (325 aa)
COX2Cytochrome c oxidase subunit 2; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and t [...] (260 aa)
NAD7NADH dehydrogenase [ubiquinone] iron-sulfur protein 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). Component of the iron-sulfur (IP) fragment of the enzyme. (394 aa)
RPL260S ribosomal protein L2, mitochondrial; Belongs to the universal ribosomal protein uL2 family. (349 aa)
ND4NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (495 aa)
T25N20.10Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein. (205 aa)
PPR336Pentatricopeptide repeat-containing protein At1g61870, mitochondrial; May be involved in translation through its association with polysomes. Could bind RNA; Belongs to the PPR family. P subfamily. (408 aa)
NFD3Probable ribosomal protein S11, mitochondrial; Required for karyogamy during female gametophyte development, when the two polar nuclei fuse to form the diploid central cell nucleus; Belongs to the universal ribosomal protein uS11 family. (314 aa)
F6I1.13Mitochondrial 28S ribosomal protein S29-like protein. (480 aa)
NAD9NADH dehydrogenase [ubiquinone] iron-sulfur protein 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (190 aa)
MTERF15Transcription termination factor MTERF15, mitochondrial; Transcription termination factor required for mitochondrial NAD2 intron 3 splicing and normal membrane respiratory chain Complex I activity. Essential for normal plant growth and development. Binds to RNA but not to double-stranded DNA. (445 aa)
NMAT1Nuclear intron maturase 1, mitochondrial; Nuclear-encoded maturase required for splicing of group-II introns in mitochondria. Necessary for mitochondrial biogenesis during early developmental stages. Involved in the splicing of mitochondrial NAD4 transcripts. Required for trans-splicing of NAD1 intron 1 and also functions in cis-splicing of NAD2 intron 1 and NAD4 intron 2. Required for the regulation of fundamental metabolic pathways such as amino acid metabolism, triacylglycerol degradation and polysaccharide synthesis (cellulose and starch) during the early stage of plant growth. Imp [...] (711 aa)
NMAT4Nuclear intron maturase 4, mitochondrial; Nuclear-encoded maturase required for splicing of group-II introns in mitochondria. Involved in NAD1 pre-mRNA processing and maturation of introns 1, 3 and 4. Necessary for mitochondrial biogenesis during early developmental stages. Essential for respiratory holocomplex I biogenesis in mitochondria. (798 aa)
ABO6ATP-dependent RNA helicase A-like protein. (1161 aa)
PHB7Prohibitin-7, mitochondrial; Prohibitin probably acts as a holdase/unfoldase for the stabilization of newly synthesized mitochondrial proteins. (278 aa)
NMAT2Nuclear intron maturase 2, mitochondrial; Nuclear-encoded maturase required for splicing of group-II introns in mitochondria. Involved in the splicing of mitochondrial COX2, NAD1 and NAD7 transcripts. Necessary for mitochondrial biogenesis during early developmental stages. (735 aa)
T1K7.17Pentatricopeptide repeat-containing protein At1g26460, mitochondrial. (630 aa)
F14J16.14Pentatricopeptide repeat-containing protein At1g55890, mitochondrial. (398 aa)
RH53DEAD-box ATP-dependent RNA helicase 53, mitochondrial. (616 aa)
PHB6Prohibitin-6, mitochondrial; Prohibitin probably acts as a holdase/unfoldase for the stabilization of newly synthesized mitochondrial proteins. (286 aa)
GRP23-2Pentatricopeptide repeat-containing protein At1g10270; May function as a transcriptional regulator essential for early embryogenesis. (913 aa)
petCCytochrome b6-f complex iron-sulfur subunit, chloroplastic; Essential protein for photoautotrophism. Confers resistance to photo-oxidative damages by contributing to the thermal dissipation of light energy and to lumenal acidification (increase of pH gradient). Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions (By similarity). Belongs to the Rieske iron-sulfur protein family. (229 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (18%) [HD]