Your Input: | |||||
PIF3 | Transcription factor PIF3; Transcription factor acting positively in the phytochrome signaling pathway. Activates transcription by binding to the G box (5'- CACGTG-3'). (524 aa) | ||||
CBP60G | Calmodulin-binding protein 60 G; Transcription activator that binds DNA in a sequence-specific manner, 5'-GAAATTTTGG-3', to promote the expression of target genes. Recruited to the promoter of ICS1 and other defense-related genes (e.g. PR1, PR2 and EDS5) in response to both biotic (e.g. Pseudomonas syringae pv. maculicola ES4326, P. syringae pv. tomato DC3000, and microbe- associated molecular patterns (MAMPs) such as flg22) and abiotic stresses (e.g. UV-B, drought and abscisic acid), thus triggering rapid defense responses by stimulating salicylic acid (SA) biosynthesis. Involved in b [...] (563 aa) | ||||
ZAT6 | Zinc finger protein ZAT6; Probable transcription factor that regulates root development and phosphate (Pi) acquisition and homeostasis. Probably acts as a repressor of primary root growth and regulates Pi homeostasis through the control of root architecture. (238 aa) | ||||
EIN3 | Protein ETHYLENE INSENSITIVE 3; Probable transcription factor acting as a positive regulator in the ethylene response pathway. Is required for ethylene responsiveness in adult plant tissues. Binds a primary ethylene response element present in the ETHYLENE-RESPONSE-FACTOR1 promoter with consequence to activate the transcription of this gene. (628 aa) | ||||
MYC4 | Transcription factor MYC4; Transcription factor involved in jasmonic acid (JA) gene regulation. With MYC2 and MYC3, controls additively subsets of JA- dependent responses. Can form complexes with all known glucosinolate- related MYBs to regulate glucosinolate biosynthesis. Binds to the G-box (5'-CACGTG-3') of promoters. Activates multiple TIFY/JAZ promoters. (589 aa) | ||||
AS1 | Transcription factor AS1; Transcription factor required for normal cell differentiation. Positively regulates LATERAL ORGAN BOUNDARIES (LOB) within the shoot apex, and the class III HD-ZIP genes REV, PHB, and PHV. Interacts directly with ASYMMETRIC LEAVES 2 (LBD6/AS2) to repress the knox homeobox genes BP/KNAT1, KNAT2, and KNAT6 and the abaxial determinants ARF3/ETT, KAN2 and YAB5. May act in parallel with the RDR6-SGS3-AGO7 pathway, an endogenous RNA silencing pathway, to regulate the leaf morphogenesis. Binds directly to KNAT1, KNAT2, and KNATM chromatin, regulating leaf development. [...] (367 aa) | ||||
PHYB | Phytochrome B; Regulatory photoreceptor which exists in two forms that are reversibly interconvertible by light: the Pr form that absorbs maximally in the red region of the spectrum and the Pfr form that absorbs maximally in the far-red region. Photoconversion of Pr to Pfr induces an array of morphogenetic responses, whereas reconversion of Pfr to Pr cancels the induction of those responses. Pfr controls the expression of a number of nuclear genes including those encoding the small subunit of ribulose-bisphosphate carboxylase, chlorophyll A/B binding protein, protochlorophyllide reduct [...] (1172 aa) | ||||
PR5 | Pathogenesis-related protein 5; Partially responsible for acquired pathogen resistance. (239 aa) | ||||
LOX2 | Lipoxygenase 2, chloroplastic; 13S-lipoxygenase that can use linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Required for the wound-induced synthesis of jasmonic acid (JA) in leaves. (896 aa) | ||||
TGA2 | Transcription factor TGA2; Transcriptional activator that binds specifically to the DNA sequence 5'-TGACG-3'. Recognizes ocs elements like the as-1 motif of the cauliflower mosaic virus 35S promoter. Binding to the as-1-like cis elements mediate auxin- and salicylic acid-inducible transcription. Required to induce the systemic acquired resistance (SAR) via the regulation of pathogenesis-related genes expression. Binding to the as- 1 element of PR-1 promoter is salicylic acid-inducible and mediated by NPR1. Could also bind to the C-boxes (5'-ATGACGTCAT-3') with high affinity. (330 aa) | ||||
CCA1 | Protein CCA1; Transcription factor involved in the circadian clock and in the phytochrome regulation. Binds to the promoter regions of APRR1/TOC1 and TCP21/CHE to repress their transcription. Binds to the promoter regions of CAB2A and CAB2B to promote their transcription. Represses both LHY and itself. (608 aa) | ||||
NPR1 | Regulatory protein NPR1; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Key positive regulator of the SA-dependent signaling pathway that negatively regulates JA-dependent signaling pathway. Mediates the binding of TGA factors to the as-1 motif found in the pathogenesis-related PR-1 gene, leading to the transcriptional regulation of the gene defense. Controls the onset of systemic acquired resistance (SAR). Upon SAR induction, [...] (593 aa) | ||||
PP2AA3 | Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A gamma isoform; The A subunit of protein phosphatase 2A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit. Involved during developmental process such as seedling and floral developments. Seems to act as a negative regulator of PP2A catalytic activity. (587 aa) | ||||
TGA6 | Transcription factor TGA6; Transcriptional activator that binds specifically to the DNA sequence 5'-TGACG-3'. Recognizes ocs elements like the as-1 motif of the cauliflower mosaic virus 35S promoter. Binding to the as-1-like cis elements mediate auxin- and salicylic acid-inducible transcription. May be involved in the induction of the systemic acquired resistance (SAR) via its interaction with NPR1. Could also bind to the Hex-motif (5'- TGACGTGG-3') another cis-acting element found in plant histone promoters (By similarity). (330 aa) | ||||
TGA5 | Transcription factor TGA5; Transcriptional activator that binds specifically to the DNA sequence 5'-TGACG-3'. Recognizes ocs elements like the as-1 motif of the cauliflower mosaic virus 35S promoter. Binding to the as-1-like cis elements mediate auxin- and salicylic acid-inducible transcription. May be involved in the induction of the systemic acquired resistance (SAR) via its interaction with NPR1. Could also bind to the Hex-motif (5'- TGACGTGG-3') another cis-acting element found in plant histone promoters. (330 aa) | ||||
MYC2 | Transcription factor MYC2; Transcriptional activator. Common transcription factor of light, abscisic acid (ABA), and jasmonic acid (JA) signaling pathways. With MYC3 and MYC4, controls additively subsets of JA-dependent responses. In cooperation with MYB2 is involved in the regulation of ABA-inducible genes under drought stress conditions. Can form complexes with all known glucosinolate-related MYBs to regulate glucosinolate biosynthesis. Binds to the MYC recognition site (5'-CACATG-3'), and to the G-box (5'-CACNTG-3') and Z-box (5'-ATACGTGT-3') of promoters. Binds directly to the prom [...] (623 aa) | ||||
CALS5 | Callose synthase 5; Required for the formation of the callose wall separating the tetraspores (interstitial wall) and surrounding the pollen mother cells (pheripheral wall). Required for exine formation on pollen wall. May be involved in callose synthesis during pollen tube growth. During plant growth and development, callose is found as a transitory component of the cell plate in dividing cells, is a major component of pollen mother cell walls and pollen tubes, and is found as a structural component of plasmodesmatal canals. (1923 aa) | ||||
CAMTA2 | Calmodulin-binding transcription activator 2; Transcription activator that binds to the DNA consensus sequence 5'-[ACG]CGCG[GTC]-3' (By similarity). Regulates transcriptional activity in response to calcium signals (Probable). Binds calmodulin in a calcium-dependent manner (By similarity). Involved in freezing tolerance in association with CAMTA1 and CAMTA3. Contributes together with CAMTA1 and CAMTA3 to the positive regulation of the cold-induced expression of DREB1A/CBF3, DREB1B/CBF1 and DREB1C/CBF2. Involved together with CAMTA3 and CAMTA4 in the positive regulation of a general str [...] (1050 aa) | ||||
PIF5 | Transcription factor PIF5; Transcription factor acting negatively in the phytochrome B signaling pathway to promote the shade-avoidance response. Regulates PHYB abundance at the post-transcriptional level, possibly via the ubiquitin-proteasome pathway. Promotes ethylene activity in the dark. May regulate the expression of a subset of genes by binding to the G- box motif. Might be involved in the integration of light-signals to control both circadian and photomorphogenic processes. Activated by CRY1 and CRY2 in response to low blue light (LBL) by direct binding at chromatin on E-box var [...] (444 aa) | ||||
CAMTA3 | Calmodulin-binding transcription activator 3; Transcription activator that binds to the DNA consensus sequence 5'-[ACG]CGCG[GTC]-3'. Binds calmodulin in a calcium-dependent manner in vitro. Regulates transcriptional activity in response to calcium signals (Probable). Involved in freezing tolerance in association with CAMTA1 and CAMTA2. Required for the cold-induced expression of DREB1B/CBF1, DREB1C/CBF2, ZAT12 and GOLS3. Involved in response to cold. Contributes together with CAMTA5 to the positive regulation of the cold-induced expression of DREB1A/CBF3, DREB1B/CBF1 and DREB1C/CBF2. I [...] (1032 aa) | ||||
AT3G14780 | Glycosyltransferase. (347 aa) | ||||
NPR3 | Regulatory protein NPR3; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Involved in the regulation of basal defense responses against pathogens. (586 aa) | ||||
ERF6 | Ethylene-responsive transcription factor 6; Probably acts as a transcriptional activator. Binds to the GCC-box pathogenesis-related promoter element. May be involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways (By similarity); Belongs to the AP2/ERF transcription factor family. ERF subfamily. (282 aa) | ||||
PIF4 | Transcription factor PIF4; Transcription factor acting negatively in the phytochrome B signaling pathway. May regulate the expression of a subset of genes involved in cell expansion by binding to the G-box motif (By similarity). Activated by CRY1 and CRY2 in response to low blue light (LBL) by direct binding at chromatin on E-box variant 5'-CA[CT]GTG-3' to stimulate specific gene expression to adapt global physiology (e.g. hypocotyl elongation in low blue light). Belongs to the bHLH protein family. (430 aa) | ||||
WRKY54 | Probable WRKY transcription factor 54; Transcription factor. Interacts specifically with the W box (5'-(T)TGAC[CT]-3'), a frequently occurring elicitor-responsive cis- acting element (By similarity). Together with WRKY70, negative regulator of developmental senescence, probably via the regulation of several senescence-associated markers genes. Positive regulator of EDS1-dependent defense against E.amylovora. In collaboration with WRKY70, prevents stomatal closure and, consequently, osmotic stress tolerance. Together with WRKY46 and WRKY70, promotes brassinosteroid (BR)- regulated plant [...] (346 aa) | ||||
CYP74A | Allene oxide synthase, chloroplastic. (518 aa) | ||||
CALS1 | Callose synthase 1; Involved in callose synthesis at the forming cell plate during cytokinesis. Not required for callose formation after wounding or pathogen attack. During plant growth and development, callose is found as a transitory component of the cell plate in dividing cells, is a major component of pollen mother cell walls and pollen tubes, and is found as a structural component of plasmodesmatal canals. Belongs to the glycosyltransferase 48 family. (1950 aa) | ||||
ABA2 | Xanthoxin dehydrogenase; Involved in the biosynthesis of abscisic acid. (285 aa) | ||||
SARD1 | Protein SAR DEFICIENT 1; Transcription activator that binds DNA in a sequence-specific manner, 5'-GAAATTTTGG-3', to promote the expression of target genes. Recruited to the promoter of ICS1 and other defense-related genes (e.g. PR1 and SID2) in response to both biotic (e.g. Pseudomonas syringae pv. maculicola ES4326) and abiotic stresses (e.g. UV-B), thus triggering slow defense responses by stimulating salicylic acid (SA) biosynthesis. Required for basal and systemic acquired resistance to P. syringae pv. maculicola and Hyaloperonospora arabidopsidis. Belongs to the plant ACBP60 prote [...] (451 aa) | ||||
MYC3 | Transcription factor MYC3; Transcription factor involved in tryptophan, jasmonic acid (JA) and other stress-responsive gene regulation. With MYC2 and MYC4, controls additively subsets of JA-dependent responses. Can form complexes with all known glucosinolate-related MYBs to regulate glucosinolate biosynthesis. Binds to the G-box (5'-CACGTG-3') of promoters. Activates multiple TIFY/JAZ promoters. (592 aa) | ||||
SUMO3 | Small ubiquitin-related modifier 3; Ubiquitin-like protein which can be covalently attached to target lysines as a monomer. Does not seem to be involved in protein degradation and may function as an antagonist of ubiquitin in the degradation process (By similarity); Belongs to the ubiquitin family. SUMO subfamily. (111 aa) | ||||
CAMTA1 | Calmodulin-binding transcription activator 1; Transcription activator that binds calmodulin in a calcium- dependent manner in vitro. Binds to the DNA consensus sequence 5'-[ACG]CGCG[GTC]-3' (By similarity). Regulates transcriptional activity in response to calcium signals (Probable). Involved in freezing tolerance. Involved in freezing tolerance in association with CAMTA2 and CAMTA3. Contributes together with CAMTA2 and CAMTA3 to the positive regulation of the cold-induced expression of DREB1A/CBF3, DREB1B/CBF1 and DREB1C/CBF2. Involved in drought stress responses by regulating several [...] (1007 aa) | ||||
FMO1 | Probable flavin-containing monooxygenase 1; Required for the establishment of systemic acquired resistance (SAR). Not involved in local defense mechanisms. Confers a salicylic acid-dependent (SA) resistance to virulent pathogens such as P.syringae pv tomato and H.parasitica. (530 aa) | ||||
NCED3 | 9-cis-epoxycarotenoid dioxygenase NCED3, chloroplastic; Has a 11,12(11',12') 9-cis epoxycarotenoid cleavage activity. Catalyzes the first step of abscisic-acid biosynthesis from carotenoids, in response to water stress. (599 aa) | ||||
CALS4 | Callose synthase 4; Involved in callose synthesis at the forming cell plate during cytokinesis. During plant growth and development, callose is found as a transitory component of the cell plate in dividing cells, is a major component of pollen mother cell walls and pollen tubes, and is found as a structural component of plasmodesmatal canals (By similarity). (1871 aa) | ||||
CALS8 | Putative callose synthase 8; Involved in callose synthesis at the forming cell plate during cytokinesis. During plant growth and development, callose is found as a transitory component of the cell plate in dividing cells, is a major component of pollen mother cell walls and pollen tubes, and is found as a structural component of plasmodesmatal canals (By similarity); Belongs to the glycosyltransferase 48 family. (1976 aa) | ||||
CALS3 | Callose synthase 3; Involved in callose synthesis at the forming cell plate during cytokinesis. During plant growth and development, callose is found as a transitory component of the cell plate in dividing cells, is a major component of pollen mother cell walls and pollen tubes, and is found as a structural component of plasmodesmatal canals (By similarity); Belongs to the glycosyltransferase 48 family. (1955 aa) | ||||
CALS6 | Putative callose synthase 6; Probably involved in callose synthesis, but not required for callose formation after wounding or pathogen attack. During plant growth and development, callose is found as a transitory component of the cell plate in dividing cells, is a major component of pollen mother cell walls and pollen tubes, and is found as a structural component of plasmodesmatal canals. (1921 aa) | ||||
PAD4 | Lipase-like PAD4; Probable lipase required downstream of MPK4 for accumulation of the plant defense-potentiating molecule, salicylic acid, thus contributing to the plant innate immunity against invasive biotrophic pathogens and to defense mechanisms upon recognition of microbe- associated molecular patterns (MAMPs). Participates in the regulation of various molecular and physiological processes that influence fitness. Together with SG101, required for programmed cell death (PCD) triggered by NBS-LRR resistance proteins (e.g. RPS4, RPW8.1 and RPW8.2) in response to the fungal toxin fumo [...] (541 aa) | ||||
ICS1 | Isochorismate synthase 1, chloroplastic; Involved in the synthesis of salicylic acid (SA) required for both local and systemic acquired resistance (LAR and SAR) while SA synthesized through the phenylalanine ammonium lyase (PAL) pathway seems to potentiate plant cell death. Also involved in phylloquinone (vitamin K1) synthesis. Has no isochorismate pyruvate lyase (IPL) activity. (569 aa) | ||||
EIN2 | Ethylene-insensitive protein 2; Central factor in signaling pathways regulated by ethylene (ET), and involved in various processes including development, plant defense, senescence, nucleotide sugar flux, and tropisms. Necessary for ethylene-mediated gene regulation, and for the induction of some genes by ozone. Acts downstream of ET receptors, and upstream of ethylene regulated transcription factors. Required for cytokinin-mediated processes. Seems to be implicated in cross-talk between ET, jasmonate and other pathways. Probably not involved in iron uptake. Has a short half-life and un [...] (1294 aa) | ||||
CALS11 | Callose synthase 11; Required the formation of the callose wall separating the tetraspores (interstitial wall), but not for the callose wall surrounding the pollen mother cells (peripheral wall). Functionally redudant to CALS12 (GSL5). During plant growth and development, callose is found as a transitory component of the cell plate in dividing cells, is a major component of pollen mother cell walls and pollen tubes, and is found as a structural component of plasmodesmatal canals. (1768 aa) | ||||
CALS9 | Callose synthase 9; Involved in sporophytic and gametophytic development. Required for normal plant development. During pollen formation, required for the entry of microspores into mitosis and microspore symmetric division. May be required for correct temporal and spatial control of callose deposition during pollen mitosis. During plant growth and development, callose is found as a transitory component of the cell plate in dividing cells, is a major component of pollen mother cell walls and pollen tubes, and is found as a structural component of plasmodesmatal canals. (1890 aa) | ||||
CALS7 | Callose synthase 7; Involved in callose synthesis at the forming cell plate during cytokinesis. During plant growth and development, callose is found as a transitory component of the cell plate in dividing cells, is a major component of pollen mother cell walls and pollen tubes, and is found as a structural component of plasmodesmatal canals (By similarity). (1958 aa) | ||||
CALS10 | Callose synthase 10; Involved in sporophytic and gametophytic development. Required for normal plant development and for the proper accumulation of callose at cell plates, cll walls and plasmodesmata. During pollen formation, required for the entry of microspores into mitosis. During plant growth and development, callose is found as a transitory component of the cell plate in dividing cells, is a major component of pollen mother cell walls and pollen tubes, and is found as a structural component of plasmodesmatal canals. Required for proper cell division and tissue patterning throughou [...] (1904 aa) | ||||
CALS2 | Callose synthase 2; Involved in callose synthesis at the forming cell plate during cytokinesis. During plant growth and development, callose is found as a transitory component of the cell plate in dividing cells, is a major component of pollen mother cell walls and pollen tubes, and is found as a structural component of plasmodesmatal canals (By similarity). (1950 aa) | ||||
EIL1 | ETHYLENE INSENSITIVE 3-like 1 protein; Probable transcription factor acting as a positive regulator in the ethylene response pathway. Could bind the primary ethylene response element present in the ETHYLENE-RESPONSE-FACTOR1 promoter. Belongs to the EIN3 family. (584 aa) | ||||
EDS1 | Protein EDS1; Positive regulator of basal resistance and of effector- triggered immunity specifically mediated by TIR-NB-LRR (TNL) resistance proteins. Disruption by bacterial effector of EDS1-TIR-NB-LRR resistance protein interactions constitutes the first step in resistance activation. Acts redundantly with salicylic acid to regulate resistance gene-mediated signaling. Triggers early plant defenses and hypersensitive response independently of PAD4, and then recruits PAD4 to potentiate plant defenses through the accumulation of salicylic acid. Nuclear localization is essential for bas [...] (623 aa) | ||||
ALD1 | Aminotransferase ALD1, chloroplastic; Aminotransferase involved in local and systemic acquired resistance (SAR) to the bacterial pathogen P.syringae. Required for salicylic acid (SA) and camalexin accumulation upon pathogen infection. Possesses aminotransferase activity in vitro and may generate amino- acid-derived defense signals in vivo. May be involved in ethylene- induced senescence signaling. Involved in the biosynthesis of pipecolate (Pip), a metabolite that orchestrates defense amplification, positive regulation of SA biosynthesis, and priming to guarantee effective local resist [...] (456 aa) | ||||
CALS12 | Callose synthase 12; Involved in sporophytic and gametophytic development. Required for normal leaf development. During pollen formation, required for the formation of the callose wall separating the tetraspores of the tetrad (interstitial wall), but not for the callose wall surrounding the pollen mother cells (peripheral wall). Functionally redudant to CALS11 (GSL1). May play a role later in pollen grain maturation. Required for callose formation induced by wounding and pathogen attack. May interfere with salicylic acid-induced signaling pathway during defense response. During plant g [...] (1780 aa) |