STRINGSTRING
PIN8 PIN8 ERABP1 ERABP1 RPS5B RPS5B TIR1 TIR1 IBR5 IBR5 PIN4 PIN4 PIN7 PIN7 TAR2 TAR2 AUX1 AUX1 PIN5 PIN5 YUC11 YUC11 SKP2A SKP2A PIN2 PIN2 TAA1 TAA1 PIN3 PIN3 PIN6 PIN6 YUC1 YUC1 IAA28 IAA28 RPS5A RPS5A
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
PIN8Auxin efflux carrier component 8; Component of the intracellular auxin-transport pathway in the male gametophyte. Involved in the regulation of auxin homeostasis in pollen. Involved in the efflux of auxin from the endoplasmic reticulum into the cytoplasm. PIN5 and PIN8 may have an antagonistic/compensatory activity. Involved in the control of vein patterning. Redundantly with PIN6, inhibits the vein-formation- promoting functions of PIN5. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. (367 aa)
ERABP1Auxin-binding protein 1; Auxin receptor that controls cell elongation and cell division. Involved in embryonic morphogenesis. Acts on the cell cycle, endocycle, cell plate formation, and cell expansion and contributes to the control of auxin-related gene expression. Controls root meristem size and mediates auxin responsiveness. Involved in activation of ROP GTPases in response to auxin and regulation of clathrin-mediated endocytosis in roots. Acts as a positive factor in clathrin recruitment to the plasma membrane, thereby promoting endocytosis. Upon auxin binding, restricts the intern [...] (198 aa)
RPS5B40S ribosomal protein S5-2; Belongs to the universal ribosomal protein uS7 family. (207 aa)
TIR1Protein TRANSPORT INHIBITOR RESPONSE 1; Auxin receptor that mediates Aux/IAA proteins proteasomal degradation and auxin-regulated transcription. The SCF(TIR1) E3 ubiquitin ligase complex is involved in auxin-mediated signaling pathway that regulate root and hypocotyl growth, lateral root formation, cell elongation, and gravitropism. Appears to allow pericycle cells to overcome G2 arrest prior to lateral root development. Plays a role in ethylene signaling in roots. Confers sensitivity to the virulent bacterial pathogen P.syringae. (594 aa)
IBR5Protein-tyrosine-phosphatase IBR5; Required for the transduction of auxin and abscisic acid (ABA) signaling pathways. Dephosphorylates and inactivates the MAP kinase MPK12. (257 aa)
PIN4Auxin efflux carrier component 4; Acts as a component of the auxin efflux carrier. Plays a role in generating a sink for auxin into columella cells. Maintains the endogenous auxin gradient, which is essential for correct root patterning. Involved in EXO70A3-regulated gravitropic responses in columella cells and in root system architecture (RSA). (616 aa)
PIN7Auxin efflux carrier component 7; Acts as a component of the auxin efflux carrier. Mediates the initial auxin gradient which contributes to the establishment of the apical-basal axis in early embryogenesis. (619 aa)
TAR2Tryptophan aminotransferase-related protein 2; Involved in auxin production. Both TAA1 and TAR2 are required for maintaining proper auxin levels in roots, while TAA1, TAR1 and TAR2 are required for proper embryo patterning. Involved in the maintenance of the root stem cell niches. (440 aa)
AUX1Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] (485 aa)
PIN5Auxin efflux carrier component 5; Auxin transporter regulating intracellular auxin homeostasis and metabolism. Mediates the auxin transport from the cytosol into the lumen of the endoplasmic reticulum. May also act as an auxin efflux carrier when located to the cell membrane. PIN5 and PIN8 may have an antagonistic/compensatory activity. Involved in unfolded protein response (UPR) activation. Involved in the control of vein patterning. Promotes vein formation. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. (351 aa)
YUC11Probable indole-3-pyruvate monooxygenase YUCCA11; Involved in auxin biosynthesis. Belongs to the FMO family. (391 aa)
SKP2AF-box protein SKP2A; Component of SCF(SKP2A) E3 ubiquitin ligase complexes, which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (including cell cycle repressors). Acts as an auxin receptor. Regulates the stability of the transcription factors E2FC and DPB, repressors of cell proliferation. Confers increase tolerance to osmotic stress by promoting cell division, especially in meristems. Promotes the formation of lateral root primordia. (360 aa)
PIN2Auxin efflux carrier component 2; Acts as a component of the auxin efflux carrier. Seems to be involved in the root-specific auxin transport, and mediates the root gravitropism. Its particular localization suggest a role in the translocation of auxin towards the elongation zone. (647 aa)
TAA1L-tryptophan--pyruvate aminotransferase 1; L-tryptophan aminotransferase involved in auxin (IAA) biosynthesis. Can convert L-tryptophan and pyruvate to indole-3-pyruvic acid (IPA) and alanine. Catalyzes the first step in IPA branch of the auxin biosynthetic pathway. Required for auxin production to initiate multiple change in growth in response to environmental and developmental cues. It is also active with phenylalanine, tyrosine, leucine, alanine, methionine and glutamine. Both TAA1 and TAR2 are required for maintaining proper auxin levels in roots, while TAA1, TAR1 and TAR2 are requ [...] (391 aa)
PIN3Auxin efflux carrier component 3; Acts as a component of the auxin efflux carrier. Seems to be involved in the lateral auxin transport system and mediates tropic growth. Coordinated polar localization of PIN3 is directly regulated by the vesicle trafficking process. (640 aa)
PIN6Auxin efflux carrier component 6; Component of the intracellular auxin-transport pathway. Regulates auxin transport and auxin homeostasis. Directly involved in the regulation of nectar production. Involved in unfolded protein response (UPR) activation. Involved in the control of vein patterning. Redundantly with PIN8, inhibits the vein-formation-promoting functions of PIN5. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. Belongs to the auxin efflux carrier (TC 2.A.69.1) family. (570 aa)
YUC1Probable indole-3-pyruvate monooxygenase YUCCA1; Involved in auxin biosynthesis, but not in the tryptamine or the CYP79B2/B3 branches. Catalyzes in vitro the N-oxidation of tryptamine to form N-hydroxyl tryptamine. Involved during embryogenesis and seedling development. Required for the formation of floral organs and vascular tissues. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in shoots. (414 aa)
IAA28Auxin-responsive protein IAA28; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. (175 aa)
RPS5A40S ribosomal protein S5-1. (207 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (30%) [HD]