node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AHA5 | AUX1 | Q9SJB3 | Q96247 | ATPase 5, plasma membrane-type; The plasma membrane H(+) ATPase of plants and fungi generates a proton gradient that drives the active transport of nutrients by H(+)-symport. The resulting external acidification and/or internal alkinization may mediate growth responses (By similarity). Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIIA subfamily. | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | 0.514 |
ARF7 | AUX1 | P93022 | Q96247 | Auxin response factor 7; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Act as a transcriptional activator of several tropic stimulus-induced (TSI) genes, including SAUR50. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Required for differential growth responses of aerial tissues. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LB [...] | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | 0.977 |
ARF7 | EXPA1 | P93022 | Q9C554 | Auxin response factor 7; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Act as a transcriptional activator of several tropic stimulus-induced (TSI) genes, including SAUR50. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Required for differential growth responses of aerial tissues. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LB [...] | Expansin-A1; Causes loosening and extension of plant cell walls by disrupting non-covalent bonding between cellulose microfibrils and matrix glucans. No enzymatic activity has been found (By similarity). Belongs to the expansin family. Expansin A subfamily. | 0.456 |
ARF7 | EXPA8 | P93022 | O22874 | Auxin response factor 7; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Act as a transcriptional activator of several tropic stimulus-induced (TSI) genes, including SAUR50. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Required for differential growth responses of aerial tissues. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LB [...] | Expansin-A8; Causes loosening and extension of plant cell walls by disrupting non-covalent bonding between cellulose microfibrils and matrix glucans. No enzymatic activity has been found (By similarity). Belongs to the expansin family. Expansin A subfamily. | 0.455 |
ARF7 | IAA1 | P93022 | P49677 | Auxin response factor 7; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Act as a transcriptional activator of several tropic stimulus-induced (TSI) genes, including SAUR50. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Required for differential growth responses of aerial tissues. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LB [...] | Auxin-responsive protein IAA1; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. | 0.940 |
ARF7 | IAA17 | P93022 | P93830 | Auxin response factor 7; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Act as a transcriptional activator of several tropic stimulus-induced (TSI) genes, including SAUR50. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Required for differential growth responses of aerial tissues. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LB [...] | Auxin-responsive protein IAA17; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. | 0.985 |
ARF7 | IAA3 | P93022 | Q38822 | Auxin response factor 7; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Act as a transcriptional activator of several tropic stimulus-induced (TSI) genes, including SAUR50. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Required for differential growth responses of aerial tissues. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LB [...] | Auxin-responsive protein IAA3; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Plays a central role in auxin regulation of root growth, in gravitropism, and in lateral root formation. Regulated by an auxin-induced protein turnover. Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response gene [...] | 0.957 |
ARF7 | IAA7 | P93022 | Q38825 | Auxin response factor 7; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Act as a transcriptional activator of several tropic stimulus-induced (TSI) genes, including SAUR50. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Required for differential growth responses of aerial tissues. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LB [...] | Auxin-responsive protein IAA7; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. | 0.948 |
ARF7 | SKP1A | P93022 | Q39255 | Auxin response factor 7; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Act as a transcriptional activator of several tropic stimulus-induced (TSI) genes, including SAUR50. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Required for differential growth responses of aerial tissues. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LB [...] | SKP1-like protein 1A; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1. SCF(UFO) is required for vegetative and floral organ development as well as for male gametogenesis. SCF(TIR1) is involved in auxin signaling pathway. SCF(COI1) regulates responses to jasmonates. SCF(EID1) and SCF(AFR) are implicate [...] | 0.468 |
ARF7 | TIR1 | P93022 | Q570C0 | Auxin response factor 7; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Act as a transcriptional activator of several tropic stimulus-induced (TSI) genes, including SAUR50. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Required for differential growth responses of aerial tissues. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LB [...] | Protein TRANSPORT INHIBITOR RESPONSE 1; Auxin receptor that mediates Aux/IAA proteins proteasomal degradation and auxin-regulated transcription. The SCF(TIR1) E3 ubiquitin ligase complex is involved in auxin-mediated signaling pathway that regulate root and hypocotyl growth, lateral root formation, cell elongation, and gravitropism. Appears to allow pericycle cells to overcome G2 arrest prior to lateral root development. Plays a role in ethylene signaling in roots. Confers sensitivity to the virulent bacterial pathogen P.syringae. | 0.898 |
AUX1 | AHA5 | Q96247 | Q9SJB3 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | ATPase 5, plasma membrane-type; The plasma membrane H(+) ATPase of plants and fungi generates a proton gradient that drives the active transport of nutrients by H(+)-symport. The resulting external acidification and/or internal alkinization may mediate growth responses (By similarity). Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIIA subfamily. | 0.514 |
AUX1 | ARF7 | Q96247 | P93022 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | Auxin response factor 7; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Act as a transcriptional activator of several tropic stimulus-induced (TSI) genes, including SAUR50. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Required for differential growth responses of aerial tissues. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LB [...] | 0.977 |
AUX1 | EXPA1 | Q96247 | Q9C554 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | Expansin-A1; Causes loosening and extension of plant cell walls by disrupting non-covalent bonding between cellulose microfibrils and matrix glucans. No enzymatic activity has been found (By similarity). Belongs to the expansin family. Expansin A subfamily. | 0.550 |
AUX1 | EXPA8 | Q96247 | O22874 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | Expansin-A8; Causes loosening and extension of plant cell walls by disrupting non-covalent bonding between cellulose microfibrils and matrix glucans. No enzymatic activity has been found (By similarity). Belongs to the expansin family. Expansin A subfamily. | 0.470 |
AUX1 | IAA1 | Q96247 | P49677 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | Auxin-responsive protein IAA1; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. | 0.899 |
AUX1 | IAA17 | Q96247 | P93830 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | Auxin-responsive protein IAA17; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. | 0.929 |
AUX1 | IAA3 | Q96247 | Q38822 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | Auxin-responsive protein IAA3; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Plays a central role in auxin regulation of root growth, in gravitropism, and in lateral root formation. Regulated by an auxin-induced protein turnover. Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response gene [...] | 0.927 |
AUX1 | IAA7 | Q96247 | Q38825 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | Auxin-responsive protein IAA7; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. | 0.930 |
AUX1 | SKP1A | Q96247 | Q39255 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | SKP1-like protein 1A; Involved in ubiquitination and subsequent proteasomal degradation of target proteins. Together with CUL1, RBX1 and a F-box protein, it forms a SCF E3 ubiquitin ligase complex. The functional specificity of this complex depends on the type of F-box protein. In the SCF complex, it serves as an adapter that links the F-box protein to CUL1. SCF(UFO) is required for vegetative and floral organ development as well as for male gametogenesis. SCF(TIR1) is involved in auxin signaling pathway. SCF(COI1) regulates responses to jasmonates. SCF(EID1) and SCF(AFR) are implicate [...] | 0.903 |
AUX1 | TIR | Q96247 | Q9SSN3 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] | Toll/interleukin-1 receptor-like protein; Disease resistance protein. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via a direct or indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth (By similarity). | 0.979 |