STRINGSTRING
YUC3 YUC3 ABCB4 ABCB4 CYP79B2 CYP79B2 GH3.5 GH3.5 IAA17 IAA17 CYP79B3 CYP79B3 YUC6 YUC6 PIN7 PIN7 WAT1 WAT1 ZIFL1 ZIFL1 AUX1 AUX1 ROSY1 ROSY1 PILS2 PILS2 LAX3 LAX3 ABCB19 ABCB19 PIN2 PIN2 PIN3 PIN3 PILS5 PILS5 CALS10 CALS10 SYT1 SYT1 YUC2 YUC2 UGT74E2 UGT74E2 ABCB1 ABCB1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
YUC3Probable indole-3-pyruvate monooxygenase YUCCA3; Involved in auxin biosynthesis. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in roots. (437 aa)
ABCB4ABC transporter B family member 4; Auxin influx transporter that mediates the transport of auxin in roots. Contributes to the basipetal transport in hypocotyls and root tips by establishing an auxin uptake sink in the root cap. Confers sensitivity to 1-N-naphthylphthalamic acid (NPA). Regulates the root elongation, the initiation of lateral roots and the development of root hairs. Can transport IAA, indole-3-propionic acid, NPA syringic acid, vanillic acid and some auxin metabolites, but not 2,4-D and 1- naphthaleneacetic acid. (1286 aa)
CYP79B2Tryptophan N-monooxygenase 1; Converts tryptophan to indole-3-acetaldoxime, a precursor for tryptophan-derived glucosinolates and indole-3-acetic acid (IAA). Involved in the biosynthetic pathway to 4-hydroxyindole-3-carbonyl nitrile (4-OH-ICN), a cyanogenic metabolite required for inducible pathogen defense. Belongs to the cytochrome P450 family. (541 aa)
GH3.5Indole-3-acetic acid-amido synthetase GH3.5; Catalyzes the synthesis of indole-3-acetic acid (IAA)-amino acid conjugates, providing a mechanism for the plant to cope with the presence of excess auxin. Strongly reactive with Glu, Gln, Trp, Asp, Ala, Leu, Phe, Gly, Tyr, Met, Ile and Val. Little or no product formation with His, Ser, Thr, Arg, Lys, or Cys. Also active on pyruvic and butyric acid analogs of IAA, PAA and the synthetic auxin naphthaleneacetic acid (NAA). The two chlorinated synthetic auxin herbicides 2,4-D and 3,6-dichloro-o-anisic acid (dicamba) cannot be used as substrates [...] (612 aa)
IAA17Auxin-responsive protein IAA17; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. (229 aa)
CYP79B3Tryptophan N-monooxygenase 2; Converts tryptophan to indole-3-acetaldoxime, a precursor for tryptophan derived glucosinolates and indole-3-acetic acid (IAA). Belongs to the cytochrome P450 family. (543 aa)
YUC6Indole-3-pyruvate monooxygenase YUCCA6; Involved in auxin biosynthesis via the indole-3-pyruvic acid (IPA) pathway. Also able to convert in vitro phenyl pyruvate (PPA) to phenyl acetic acid (PAA). Required for the formation of floral organs and vascular tissues. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in shoots. (417 aa)
PIN7Auxin efflux carrier component 7; Acts as a component of the auxin efflux carrier. Mediates the initial auxin gradient which contributes to the establishment of the apical-basal axis in early embryogenesis. (619 aa)
WAT1Protein WALLS ARE THIN 1; Required for secondary wall formation in fibers, especially in short days conditions. Promotes indole metabolism and transport (e.g. tryptophan, neoglucobrassicin and auxin (indole-3-acetic acid)). May prevent salicylic-acid (SA) accumulation. Belongs to the drug/metabolite transporter (DMT) superfamily. Plant drug/metabolite exporter (P-DME) (TC 2.A.7.4) family. (389 aa)
ZIFL1Protein ZINC INDUCED FACILITATOR-LIKE 1; Major facilitator superfamily (MFS) transporter probably involved in 2,4-dichlorophenoxyacetic acid (2,4-D) export. K(+) may be the physiological substrate of the transporter. [Isoform 3]: Mediates drought stress tolerance by regulating stomatal closure. (478 aa)
AUX1Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] (485 aa)
ROSY1MD-2-related lipid-recognition protein ROSY1; Involved in the regulation of gravitropic response and basipetal auxin transport in roots. Involved in salt stress tolerance. May facilitate membrane trafficking and asymmetric cell elongation via SYT1. Binds stigmasterol and dipalmitoyl phosphoethanolamine (DPPE) in vitro. (160 aa)
PILS2Protein PIN-LIKES 2; Involved in cellular auxin homeostasis by regulating auxin metabolism. Regulates intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signaling. (457 aa)
LAX3Auxin transporter-like protein 3; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex (By similarity); Belongs to the amino acid/polyamine transporter 2 family. Amino acid/auxin permease (AAAP) (TC 2.A.18.1) subfamily. (470 aa)
ABCB19ABC transporter B family member 19; Auxin efflux transporter that acts as a negative regulator of light signaling to promote hypocotyl elongation. Mediates the accumulation of chlorophyll and anthocyanin, as well as the expression of genes in response to light. Participates in auxin efflux and thus regulates the polar auxin basipetal transport (from auxin-producing leaves to auxin-sensitive tissues, and from root tips to root elongating zone). Involved in diverse auxin-mediated responses including gravitropism, phototropism and lateral root formation. (1252 aa)
PIN2Auxin efflux carrier component 2; Acts as a component of the auxin efflux carrier. Seems to be involved in the root-specific auxin transport, and mediates the root gravitropism. Its particular localization suggest a role in the translocation of auxin towards the elongation zone. (647 aa)
PIN3Auxin efflux carrier component 3; Acts as a component of the auxin efflux carrier. Seems to be involved in the lateral auxin transport system and mediates tropic growth. Coordinated polar localization of PIN3 is directly regulated by the vesicle trafficking process. (640 aa)
PILS5Protein PIN-LIKES 5; Involved in cellular auxin homeostasis by regulating auxin metabolism. Regulates intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signaling. (396 aa)
CALS10Callose synthase 10; Involved in sporophytic and gametophytic development. Required for normal plant development and for the proper accumulation of callose at cell plates, cll walls and plasmodesmata. During pollen formation, required for the entry of microspores into mitosis. During plant growth and development, callose is found as a transitory component of the cell plate in dividing cells, is a major component of pollen mother cell walls and pollen tubes, and is found as a structural component of plasmodesmatal canals. Required for proper cell division and tissue patterning throughou [...] (1904 aa)
SYT1Synaptotagmin-1; Plays an important role in maintaining plasma membrane integrity during freezing and osmotic stresses. May function in membrane resealing during calcium-dependent freezing tolerance. May regulate endocytosis and endosome recycling at the plasma membrane and cell-to-cell trafficking of cabbage leaf curl virus (CaLCuV) and tobacco mosaic virus (TMV) movement proteins via plasmodesmata. Belongs to the synaptotagmin family. (541 aa)
YUC2Indole-3-pyruvate monooxygenase YUCCA2; Involved in auxin biosynthesis. Converts the indole-3-pyruvic acid (IPA) produced by the TAA family to indole-3-acetic acid (IAA). Unable to use tryptamine (TAM) as substrate. Required for the formation of floral organs and vascular tissues. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in shoots. (415 aa)
UGT74E2UDP-glycosyltransferase 74E2; Glucosyltransferase that acts on the auxin indole-3-butyric acid (IBA). Mediates abiotic stress responses and stress-induced morphological adaptations by regulating auxin homeostasis. Possesses low activity in vitro on jasmonate (JA) and the synthetic auxin analog naphthaleneacetic acid (NAA); Belongs to the UDP-glycosyltransferase family. (453 aa)
ABCB1ABC transporter B family member 1; Auxin efflux transporter that acts as a negative regulator of light signaling to promote hypocotyl elongation. Mediates the accumulation of chlorophyll and anthocyanin, as well as the expression of genes in response to light. Participates directly in auxin efflux and thus regulates the polar (presumably basipetal) auxin transport (from root tips to root elongating zone). Transports also some auxin metabolites such as oxindoleacetic acid and indoleacetaldehyde. Involved in diverse auxin-mediated responses including gravitropism, phototropism and latera [...] (1286 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (28%) [HD]