STRINGSTRING
nad3 nad3 ccmC ccmC rps12 rps12 nad7 nad7 matR matR nad4L nad4L atp4 atp4 ABCI5 ABCI5 RPL6 RPL6 atpE atpE ndhB1 ndhB1 ndhD ndhD ND5 ND5 RPS19 RPS19 RPS13 RPS13 RPL8A RPL8A rpoB rpoB ndhF ndhF atpI atpI atpF atpF rpoC2 rpoC2 mttB mttB rpl2 rpl2 rps16 rps16 rps19 rps19 ATP9 ATP9 ND6 ND6 COX1 COX1 rps7-A rps7-A ycf3 ycf3 rps12-A rps12-A CCMC CCMC RPS12 RPS12 ND3 ND3 RPS7 RPS7 CCMB CCMB COX2 COX2 CCMFC CCMFC NAD7 NAD7 RPL2 RPL2 ND4 ND4 ND4L ND4L atp9 atp9 BRM BRM RUB2 RUB2 RPS1 RPS1 SDH4 SDH4 RPL16 RPL16 NAD9 NAD9 RPS13-2 RPS13-2 RPL10 RPL10 BLH9 BLH9 rps14-2 rps14-2 DDM1 DDM1 atp6 atp6 nad5 nad5 cox2 cox2 ccmB ccmB rps7 rps7 nad9 nad9 ccmFC ccmFC nad6 nad6 nad4 nad4 accD accD psaA psaA psaB psaB petG petG psbC psbC matK matK TIC214 TIC214 ycf2-A ycf2-A ycf4 ycf4 rpl2-A rpl2-A rpl16 rpl16 rps14 rps14
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
nad3NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (118 aa)
ccmCPutative cytochrome c biosynthesis ccmC-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes. Belongs to the CcmC/CycZ/HelC family. (256 aa)
rps12Ribosomal protein S12; Belongs to the universal ribosomal protein uS12 family. (125 aa)
nad7NADH dehydrogenase subunit 7; Belongs to the complex I 49 kDa subunit family. (394 aa)
matRMaturase. (656 aa)
nad4LNADH dehydrogenase subunit 4L. (100 aa)
atp4ATPase subunit 4. (192 aa)
ABCI5Putative cytochrome c biosynthesis ccmC-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes. Belongs to the CcmC/CycZ/HelC family. (256 aa)
RPL650S ribosomal protein L6, chloroplastic; This protein binds directly to 23S ribosomal RNA and is located at the aminoacyl-tRNA binding site of the peptidyltransferase center. (223 aa)
atpEATP synthase epsilon chain, chloroplastic; Produces ATP from ADP in the presence of a proton gradient across the membrane. (132 aa)
ndhB1NAD(P)H-quinone oxidoreductase subunit 2 A, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Belongs to the complex I subunit 2 family. (512 aa)
ndhDNAD(P)H-quinone oxidoreductase chain 4, chloroplastic; Belongs to the complex I subunit 4 family. (500 aa)
ND5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (669 aa)
RPS1940S ribosomal protein S19, mitochondrial; The RNA-binding domain found in RPS19 may functionally replaces the missing mitochondrial RPS13; Belongs to the universal ribosomal protein uS19 family. (212 aa)
RPS1330S ribosomal protein S13, chloroplastic; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA; Belongs to the universal ribosomal protein uS13 family. (169 aa)
RPL8A60S ribosomal protein L8-1. (258 aa)
rpoBDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1072 aa)
ndhFNAD(P)H-quinone oxidoreductase subunit 5, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (By similarity). (746 aa)
atpIATP synthase subunit a, chloroplastic; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (249 aa)
atpFATP synthase subunit b, chloroplastic; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (184 aa)
rpoC2DNA-directed RNA polymerase subunit beta'; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1376 aa)
mttBTransport membrane protein. (280 aa)
rpl2Ribosomal protein L2. (349 aa)
rps1630S ribosomal protein S16, chloroplastic. (79 aa)
rps1930S ribosomal protein S19, chloroplastic; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (92 aa)
ATP9ATP synthase subunit 9, mitochondrial; This protein is one of the chains of the nonenzymatic membrane component (F0) of mitochondrial ATPase. (85 aa)
ND6NADH-ubiquinone oxidoreductase chain 6; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (205 aa)
COX1Cytochrome c oxidase subunit 1; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and t [...] (527 aa)
rps7-A30S ribosomal protein S7, chloroplastic; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. (155 aa)
ycf3Photosystem I assembly protein Ycf3; Essential for the assembly of the photosystem I (PSI) complex. May act as a chaperone-like factor to guide the assembly of the PSI subunits. (168 aa)
rps12-A30S ribosomal protein S12, chloroplastic; With S4 and S5 plays an important role in translational accuracy. Located at the interface of the 30S and 50S subunits (By similarity). (123 aa)
CCMCPutative cytochrome c biosynthesis ccmC-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes; Belongs to the CcmC/CycZ/HelC family. (232 aa)
RPS12Ribosomal protein S12, mitochondrial; Protein S12 is involved in the translation initiation step; Belongs to the universal ribosomal protein uS12 family. (125 aa)
ND3NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (119 aa)
RPS7Ribosomal protein S7, mitochondrial; One of the primary rRNA binding proteins, it binds directly to 18S rRNA where it nucleates assembly of the head domain of the small subunit; Belongs to the universal ribosomal protein uS7 family. (148 aa)
CCMBPutative cytochrome c biogenesis ccmB-like mitochondrial protein; May be involved in the export of heme to the mitochondrion for the biogenesis of c-type cytochromes. (206 aa)
COX2Cytochrome c oxidase subunit 2; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and t [...] (260 aa)
CCMFCCytochrome c biogenesis CcmF C-terminal-like mitochondrial protein; Forms a complex with CCMFN1, CCMFN2 and CCMH that performs the assembly of heme with c-type apocytochromes in mitochondria. Belongs to the CcmF/CycK/Ccl1/NrfE/CcsA family. (442 aa)
NAD7NADH dehydrogenase [ubiquinone] iron-sulfur protein 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). Component of the iron-sulfur (IP) fragment of the enzyme. (394 aa)
RPL260S ribosomal protein L2, mitochondrial; Belongs to the universal ribosomal protein uL2 family. (349 aa)
ND4NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (495 aa)
ND4LNADH-ubiquinone oxidoreductase chain 4L; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (100 aa)
atp9ATP synthase subunit 9, mitochondrial; Belongs to the ATPase C chain family. (85 aa)
BRMATP-dependent helicase BRM; ATPase subunit of a multiprotein complex equivalent of the SWI/SNF complex that acts by remodeling the chromatin by catalyzing an ATP-dependent alteration in the structure of nucleosomal DNA. Represses embryonic genes in leaves and controls shoot development and flowering. Activates flower homeotic genes. The association of BRM with its target genes requires REF6. Necessary to acquire heat stress (HS) memory, by globally binding to HS memory genes. (2193 aa)
RUB2Ubiquitin-NEDD8-like protein RUB2; Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-11-linked is involved i [...] (154 aa)
RPS130S ribosomal protein S1, chloroplastic; Required for optimal plastid performance in terms of photosynthesis and growth. Required for the translation of plastid mRNAs. Involved in cellular heat stress response and required for heat tolerance. Required for transcriptional activation of HSFA2 and its target genes in response to heat stress. Plays a critical role in biosynthesis of thylakoid membrane proteins encoded by chloroplast genes. (416 aa)
SDH4Succinate dehydrogenase subunit 4, mitochondrial; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (151 aa)
RPL1660S ribosomal protein L16, mitochondrial; Belongs to the universal ribosomal protein uL16 family. (179 aa)
NAD9NADH dehydrogenase [ubiquinone] iron-sulfur protein 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (190 aa)
RPS13-2Small ribosomal subunit protein S13, mitochondrial; Located at the top of the head of the small subunit, it contacts several helices of the 18S rRNA. (154 aa)
RPL1050S ribosomal protein L10, chloroplastic; This protein binds directly to 23S ribosomal RNA. (220 aa)
BLH9BEL1-like homeodomain protein 9; Transcription factor that is involved in the preservation of the spiral phyllotactic arrangement leading to a regular pattern of organ initiation. Required for maintenance of stem cell fate in the shoot apical meristem, and is essential for specifying floral primordia and establishing early internode patterning events during inflorescence development. Acts as transcription repressor of AG expression in floral and inflorescence meristems. Is also responsive of the nuclear import of SHOOT MERISTEMLESS (STM). In the fruit, plays a central role in patternin [...] (575 aa)
rps14-2Mitochondrial ribosomal protein S14. (164 aa)
DDM1ATP-dependent DNA helicase DDM1; ATP-dependent DNA helicase that plays a role in formation, organization, stability and heritability of heterochromatin and thus regulates several physiological traits. Binds to the nucleosome and promotes chromatin remodeling in an ATP-dependent manner; induces nucleosome repositioning on a short DNA fragment, and, possibly, could be guided to target sites (including silent transposable elements) by small interfering RNAs (siRNAs). Can bind both free and nucleosomal DNA. Required for the heritable maintenance of genome integrity and transcriptional gene [...] (764 aa)
atp6ATP synthase subunit a. (385 aa)
nad5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (669 aa)
cox2Cytochrome c oxidase subunit 2; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1. (260 aa)
ccmBCytochrome c biogenesis B. (206 aa)
rps7Ribosomal protein S7. (148 aa)
nad9NADH dehydrogenase subunit 9; Belongs to the complex I 30 kDa subunit family. (190 aa)
ccmFCCytochrome c biogenesis FC. (442 aa)
nad6NADH-ubiquinone oxidoreductase chain 6; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (205 aa)
nad4NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (495 aa)
accDAcetyl-coenzyme A carboxylase carboxyl transferase subunit beta, chloroplastic; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (488 aa)
psaAPhotosystem I P700 chlorophyll a apoprotein A1; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin. (750 aa)
psaBPhotosystem I P700 chlorophyll a apoprotein A2; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin. (734 aa)
petGCytochrome b6-f complex subunit 5; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. PetG is required for either the stability or assembly of the cytochrome b6-f complex. (37 aa)
psbCPhotosystem II CP43 reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbC subfamily. (473 aa)
matKMaturase K; Usually encoded in the trnK tRNA gene intron. Probably assists in splicing its own and other chloroplast group II introns. Belongs to the intron maturase 2 family. MatK subfamily. (504 aa)
TIC214Protein TIC 214; Involved in protein precursor import into chloroplasts. May be part of an intermediate translocation complex acting as a protein- conducting channel at the inner envelope. Belongs to the TIC214 family. (1786 aa)
ycf2-AProtein Ycf2; Probable ATPase of unknown function. Its presence in a non- photosynthetic plant (Epifagus virginiana) and experiments in tobacco indicate that it has an essential function which is probably not related to photosynthesis; Belongs to the Ycf2 family. (2294 aa)
ycf4Photosystem I assembly protein Ycf4; Seems to be required for the assembly of the photosystem I complex; Belongs to the Ycf4 family. (184 aa)
rpl2-A50S ribosomal protein L2, chloroplastic; Belongs to the universal ribosomal protein uL2 family. (274 aa)
rpl1650S ribosomal protein L16, chloroplastic; Belongs to the universal ribosomal protein uL16 family. (135 aa)
rps1430S ribosomal protein S14, chloroplastic; Binds 16S rRNA, required for the assembly of 30S particles. Belongs to the universal ribosomal protein uS14 family. (100 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (36%) [HD]