Your Input: | |||||
AHK4 | Histidine kinase 4; Cytokinins (CK) receptor related to bacterial two-component regulators. Binds also the synthetic urea-type cytokinin thiadiazuron, a potent defoliant and herbicide. Functions as a histidine kinase and transmits the stress signal to a downstream MAPK cascade. This protein undergoes an ATP-dependent autophosphorylation at a conserved histidine residue in the kinase core, and a phosphoryl group is then transferred to a conserved aspartate residue in the receiver domain. In the presence of cytokinin, feeds phosphate to phosphorelay-integrating histidine phosphotransfer [...] (1080 aa) | ||||
ARR10 | Two-component response regulator ARR10; Transcriptional activator that binds specifically to the DNA sequence 5'-[AG]GATT-3'. Functions as a response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Could directly activate some type-A response regulators in response to cytokinins. (552 aa) | ||||
SRK2J | Serine/threonine-protein kinase SRK2J; Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. (339 aa) | ||||
ARR8 | Two-component response regulator ARR8; Functions as response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Type-A response regulators seem to act as negative regulators of the cytokinin signaling. (225 aa) | ||||
ARR9 | Two-component response regulator ARR9; Functions as response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Type-A response regulators seem to act as negative regulators of the cytokinin signaling. Belongs to the ARR family. Type-A subfamily. (234 aa) | ||||
PIF3 | Transcription factor PIF3; Transcription factor acting positively in the phytochrome signaling pathway. Activates transcription by binding to the G box (5'- CACGTG-3'). (524 aa) | ||||
GH3.5 | Indole-3-acetic acid-amido synthetase GH3.5; Catalyzes the synthesis of indole-3-acetic acid (IAA)-amino acid conjugates, providing a mechanism for the plant to cope with the presence of excess auxin. Strongly reactive with Glu, Gln, Trp, Asp, Ala, Leu, Phe, Gly, Tyr, Met, Ile and Val. Little or no product formation with His, Ser, Thr, Arg, Lys, or Cys. Also active on pyruvic and butyric acid analogs of IAA, PAA and the synthetic auxin naphthaleneacetic acid (NAA). The two chlorinated synthetic auxin herbicides 2,4-D and 3,6-dichloro-o-anisic acid (dicamba) cannot be used as substrates [...] (612 aa) | ||||
T16L1.210 | Putative pathogenesis-related protein 1, 19.3K; Belongs to the CRISP family. (163 aa) | ||||
T16L1.220 | Pathogenesis-related protein-like; Belongs to the CRISP family. (172 aa) | ||||
GH3.9 | Putative indole-3-acetic acid-amido synthetase GH3.9; Catalyzes the synthesis of indole-3-acetic acid (IAA)-amino acid conjugates, providing a mechanism for the plant to cope with the presence of excess auxin; Belongs to the IAA-amido conjugating enzyme family. (585 aa) | ||||
GH3.1 | Probable indole-3-acetic acid-amido synthetase GH3.1; Catalyzes the synthesis of indole-3-acetic acid (IAA)-amino acid conjugates, providing a mechanism for the plant to cope with the presence of excess auxin; Belongs to the IAA-amido conjugating enzyme family. (590 aa) | ||||
F24G24.60 | Probable fructokinase-5; May play an important role in maintaining the flux of carbon towards starch formation. (324 aa) | ||||
ARR4 | Two-component response regulator ARR4; Functions as response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Type-A response regulators seem to act as negative regulators of the cytokinin signaling. Modulates red light signaling through its interaction with the phytochrome B photoreceptor. (259 aa) | ||||
RBCS-1A | Ribulose bisphosphate carboxylase small chain 1A, chloroplastic; RuBisCO catalyzes two reactions: the carboxylation of D- ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate. Both reactions occur simultaneously and in competition at the same active site (By similarity). (180 aa) | ||||
RBCS-1B | Ribulose bisphosphate carboxylase small chain 1B, chloroplastic; RuBisCO catalyzes two reactions: the carboxylation of D- ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate. Both reactions occur simultaneously and in competition at the same active site (By similarity); Belongs to the RuBisCO small chain family. (181 aa) | ||||
RBCS-2B | Ribulose bisphosphate carboxylase small chain 2B, chloroplastic; RuBisCO catalyzes two reactions: the carboxylation of D- ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate. Both reactions occur simultaneously and in competition at the same active site (By similarity); Belongs to the RuBisCO small chain family. (181 aa) | ||||
RBCS-3B | Ribulose bisphosphate carboxylase small chain 3B, chloroplastic; RuBisCO catalyzes two reactions: the carboxylation of D- ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate. Both reactions occur simultaneously and in competition at the same active site (By similarity). (181 aa) | ||||
GAPC1 | Glyceraldehyde-3-phosphate dehydrogenase GAPC1, cytosolic; Key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3- phospho-D-glyceroyl phosphate. Essential for the maintenance of cellular ATP levels and carbohydrate metabolism. Required for full fertility. Involved in response to oxidative stress by mediating plant responses to abscisic acid (ABA) and water deficits through the activation of PLDDELTA and production of phosphatidic acid (PA), a multifunctional stress signaling lipid in plants. Associates with FBA6 to [...] (338 aa) | ||||
PR1-2 | Pathogenesis-related protein 1; Partially responsible for acquired pathogen resistance. (161 aa) | ||||
PAL1 | Phenylalanine ammonia-lyase 1; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. (725 aa) | ||||
SRK2A | Serine/threonine-protein kinase SRK2A. (363 aa) | ||||
SRK2G | Serine/threonine-protein kinase SRK2G; Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. (353 aa) | ||||
PAL2 | Phenylalanine ammonia-lyase 2; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. (717 aa) | ||||
PAL3 | Phenylalanine ammonia-lyase 3; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton. (694 aa) | ||||
SUS1 | Sucrose synthase 1; Sucrose-cleaving enzyme that provides UDP-glucose and fructose for various metabolic pathways; Belongs to the glycosyltransferase 1 family. Plant sucrose synthase subfamily. (808 aa) | ||||
ABI1 | Protein phosphatase 2C 56; Key component and repressor of the abscisic acid (ABA) signaling pathway that regulates numerous ABA responses, such as stomatal closure, osmotic water permeability of the plasma membrane (Pos), drought-induced resistance and rhizogenesis, response to glucose, high light stress, seed germination and inhibition of vegetative growth. During the stomatal closure regulation, modulates the inward calcium-channel permeability as well as the actin reorganization in guard cells in response to ABA. Involved in the resistance to the bacterial pathogen Pseudomonas syrin [...] (434 aa) | ||||
PP2CA | Protein phosphatase 2C 37; Major negative regulator of abscisic acid (ABA) responses during seed germination and cold acclimation. Confers insensitivity to ABA. Modulates negatively the AKT2/3 activity, which mediates K(+) transport and membrane polarization during stress situations, probably by dephosphorylation. Prevents stomata closure by inactivating the S- type anion efflux channel SLAC1 and its activator SRK2E. Represses KIN10 activity by the specific dephosphorylation of its T-loop Thr-198, leading to a poststress inactivation of SnRK1 signaling. (399 aa) | ||||
F14G9.19 | Phosphoglycerate kinase 2, chloroplastic. (478 aa) | ||||
UGP1 | UTP--glucose-1-phosphate uridylyltransferase 1; Converts glucose 1-phosphate to UDP-glucose, which is the major glycosyl donor for polysaccharides. Acts redundantly with UGP2 and is essential for the synthesis of sucrose, starch and cell wall, and callose deposition. Involved in the regulation of the programmed cell death (PCD) induced by the fungal toxin fumonisin B1 (FB1). (470 aa) | ||||
ARR12 | Two-component response regulator ARR12; Transcriptional activator that binds specifically to the DNA sequence 5'-[AG]GATT-3'. Functions as a response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Could directly activate some type-A response regulators in response to cytokinins. Involved in the root-meristem size determination through the regulation of cell differentiation. Involved in activating SHY2 during meristem gro [...] (596 aa) | ||||
CYP73A5 | Trans-cinnamate 4-monooxygenase; Controls carbon flux to pigments essential for pollination or UV protection, to numerous pytoalexins synthesized by plants when challenged by pathogens, and to lignins. (505 aa) | ||||
NPR1 | Regulatory protein NPR1; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Key positive regulator of the SA-dependent signaling pathway that negatively regulates JA-dependent signaling pathway. Mediates the binding of TGA factors to the as-1 motif found in the pathogenesis-related PR-1 gene, leading to the transcriptional regulation of the gene defense. Controls the onset of systemic acquired resistance (SAR). Upon SAR induction, [...] (593 aa) | ||||
HXK2 | Hexokinase-2; Fructose and glucose phosphorylating enzyme. May be involved in the phosphorylation of glucose during the export from mitochondrion to cytosol. Acts as sugar sensor which may regulate sugar-dependent gene repression or activation. Mediates the effects of sugar on plant growth and development independently of its catalytic activity or the sugar metabolism. May regulate the execution of program cell death in plant cells ; Belongs to the hexokinase family. (502 aa) | ||||
SUS2 | Sucrose synthase 2; Sucrose-cleaving enzyme that provides UDP-glucose and fructose for various metabolic pathways. Modulates metabolic homeostasis and directs carbon towards starch synthesis in developing seeds. (807 aa) | ||||
LHCA1 | Chlorophyll a-b binding protein 6, chloroplastic; The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated. (241 aa) | ||||
CTR1 | Serine/threonine-protein kinase CTR1; Acts as a negative regulator in the ethylene response pathway. Phosphorylates the cytosolic C-terminal domain of EIN2, preventing the signaling in the absence of ethylene. (821 aa) | ||||
CWINV2 | Beta-fructofuranosidase, insoluble isoenzyme CWINV2. (590 aa) | ||||
MEKK1 | Mitogen-activated protein kinase kinase kinase 1; The MEKK1, MKK1/MKK2 and MPK4 function in a signaling pathway that modulates the expression of genes responding to biotic and abiotic stresses and also plays an important role in pathogen defense by negatively regulating innate immunity. Involved in the innate immune MAP kinase signaling cascade (MEKK1, MKK4/MKK5 and MPK3/MPK6) downstream of bacterial flagellin receptor FLS2. May be involved in the cold and salinity stress-mediated MAP kinase signaling cascade (MEKK1, MKK1/MKK2 and MPK4/MPK6). Activates by phosphorylation the downstream [...] (608 aa) | ||||
PR-1-LIKE | Pathogenesis-related protein-1-like protein; Belongs to the CRISP family. (176 aa) | ||||
PR1 | Putative pathogenesis-related protein 1, 18.9K; Belongs to the CRISP family. (166 aa) | ||||
SRK2D | Serine/threonine-protein kinase SRK2D; Together with SRK2I, key component and activator of the abscisic acid (ABA) signaling pathway that regulates numerous ABA responses, such as seed germination, Pro accumulation, root growth inhibition, dormancy and seedling growth, and, to a lesser extent, stomatal closure; Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. (362 aa) | ||||
SRK2I | Serine/threonine-protein kinase SRK2I; Together with SRK2D, key component and activator of the abscisic acid (ABA) signaling pathway that regulates numerous ABA responses, such as seed germination, Pro accumulation, root growth inhibition, dormancy and seedling growth, and, to a lesser extent, stomatal closure. (361 aa) | ||||
MYC2 | Transcription factor MYC2; Transcriptional activator. Common transcription factor of light, abscisic acid (ABA), and jasmonic acid (JA) signaling pathways. With MYC3 and MYC4, controls additively subsets of JA-dependent responses. In cooperation with MYB2 is involved in the regulation of ABA-inducible genes under drought stress conditions. Can form complexes with all known glucosinolate-related MYBs to regulate glucosinolate biosynthesis. Binds to the MYC recognition site (5'-CACATG-3'), and to the G-box (5'-CACNTG-3') and Z-box (5'-ATACGTGT-3') of promoters. Binds directly to the prom [...] (623 aa) | ||||
4CL1 | 4-coumarate--CoA ligase 1; Produces CoA thioesters of a variety of hydroxy- and methoxy- substituted cinnamic acids, which are used to synthesize several phenylpropanoid-derived compounds, including anthocyanins, flavonoids, isoflavonoids, coumarins, lignin, suberin and wall-bound phenolics; Belongs to the ATP-dependent AMP-binding enzyme family. (561 aa) | ||||
HXK1 | Hexokinase-1; Fructose and glucose phosphorylating enzyme. May be involved in the phosphorylation of glucose during the export from mitochondrion to cytosol. Acts as sugar sensor which may regulate sugar-dependent gene repression or activation. Mediates the effects of sugar on plant growth and development independently of its catalytic activity or the sugar metabolism. May regulate the execution of program cell death in plant cells. Promotes roots and leaves growth. Belongs to the hexokinase family. (496 aa) | ||||
ATHXK4 | Hexokinase-4; Fructose and glucose phosphorylating enzyme (By similarity). May be involved in the phosphorylation of glucose during the export from mitochondrion to cytosol (By similarity). (502 aa) | ||||
GAPCP2 | Glyceraldehyde-3-phosphate dehydrogenase GAPCP2, chloroplastic; Involved in plastidial glycolytic pathway and plays a specific role in glycolytic energy production in non-green plastids and chloroplasts. Essential for breakdown of starch to form sucrose for export to non-photosynthetic tissues, and to generate primary metabolites for anabolic pathways such as fatty acid and amino acid synthesis. Plays an important role in plant development by providing substrates for the phosphorylated pathway of serine biosynthesis in roots. Plays a crucial role in pollen development. Functionally red [...] (420 aa) | ||||
PPC2 | Phosphoenolpyruvate carboxylase 2; Through the carboxylation of phosphoenolpyruvate (PEP) it forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle. (963 aa) | ||||
NPR4 | Regulatory protein NPR4; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Involved in the regulation of basal defense responses against pathogens, and may be implicated in the cross-talk between the SA- and JA-dependent signaling pathways. (574 aa) | ||||
ARR15 | Two-component response regulator ARR15; Functions as response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Type-A response regulators seem to act as negative regulators of the cytokinin signaling. (206 aa) | ||||
4CLL9 | 4-coumarate--CoA ligase-like 9; Contributes to jasmonic acid biosynthesis by initiating the beta-oxidative chain shortening of its precursors. Converts 12-oxo- phytodienoic acid (OPDA) into OPDA-CoA; Belongs to the ATP-dependent AMP-binding enzyme family. (562 aa) | ||||
4CLL6 | 4-coumarate--CoA ligase-like 6; Belongs to the ATP-dependent AMP-binding enzyme family. (566 aa) | ||||
TPS14 | S-(+)-linalool synthase, chloroplastic; Involved in monoterpene (C10) biosynthesis. The major product is S-(+)-linalool; Belongs to the terpene synthase family. Tpsb subfamily. (569 aa) | ||||
PPC3 | Phosphoenolpyruvate carboxylase 3; Through the carboxylation of phosphoenolpyruvate (PEP) it forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle. (968 aa) | ||||
PPC4 | Phosphoenolpyruvate carboxylase 4; Through the carboxylation of phosphoenolpyruvate (PEP) it forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle; Belongs to the PEPCase type 1 family. (1032 aa) | ||||
RGL2 | DELLA protein RGL2; Probable transcriptional regulator that acts as a repressor of the gibberellin (GA) signaling pathway. No effect of the BOI proteins on its stability. Probably acts by participating in large multiprotein complexes that repress transcription of GA-inducible genes. Upon GA application, it is degraded by the proteasome, allowing the GA signaling pathway. Acts as a major GA-response repressor of seed germination, including seed thermoinhibition. Promotes the biosynthesis of abscisic acid (ABA), especially in seed coats to maintain seed dormancy. Delays flowering and adu [...] (547 aa) | ||||
GH3.15 | Indole-3-acetic acid-amido synthetase GH3.15; Indole-3-acetic acid-amido (IAA) synthetase that catalyzes the conjugation of amino acids to auxin specifically using the auxin precursor indole-3-butyric acid (IBA) and glutamine and, possibly, cysteine as substrates. Displays high catalytic activity with the auxinic phenoxyalkanoic acid herbicides 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB) and to some extent 2,4-dichlorophenoxylacetic acid (2,4-D) as substrates, thus confering resistance to herbicides. Belongs to the IAA-amido conjugating enzyme family. (595 aa) | ||||
MDHNP_ARATH | Malate dehydrogenase [NADP], chloroplastic; The chloroplastic, NADP-dependent form is essential for the photosynthesis C4 cycle, which allows plants to circumvent the problem of photorespiration. In C4 plants, NADP-MDH activity acts to convert oxaloacetate to malate in chloroplasts of mesophyll cells for transport to the bundle sheath cells (Probable). Plays an essential role in the regulation of catalase activity and the accumulation of a hydrogen peroxide-dependent signal by transmitting the redox state of the chloroplast to other cell compartments. (443 aa) | ||||
NPR3 | Regulatory protein NPR3; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Involved in the regulation of basal defense responses against pathogens. (586 aa) | ||||
ARR14 | Two-component response regulator ARR14; Transcriptional activator that binds specifically to the DNA sequence 5'-[AG]GATT-3'. Functions as a response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Could directly activate some type-A response regulators in response to cytokinins (By similarity); Belongs to the ARR family. Type-B subfamily. (382 aa) | ||||
ERF1B | Ethylene-responsive transcription factor 1B; Acts as a transcriptional activator. Binds to the GCC-box pathogenesis-related promoter element. Involved in the regulation of gene expression during the plant development, and/or mediated by stress factors and by components of stress signal transduction pathways. Seems to be a key integrator of ethylene and jasmonate signals in the regulation of ethylene/jasmonate-dependent defenses. Can mediate resistance to necrotizing fungi (Botrytis cinerea and Plectosphaerella cucumerina) and to soil borne fungi (Fusarium oxysporum conglutinans and Fus [...] (218 aa) | ||||
SPS3-2 | Probable sucrose-phosphate synthase 3; Plays a role in photosynthetic sucrose synthesis by catalyzing the rate-limiting step of sucrose biosynthesis from UDP- glucose and fructose- 6-phosphate. Involved in the regulation of carbon partitioning in the leaves of plants. May regulate the synthesis of sucrose and therefore play a major role as a limiting factor in the export of photoassimilates out of the leaf. Plays a role for sucrose availability that is essential for plant growth and fiber elongation. (1062 aa) | ||||
WRKY33 | Probable WRKY transcription factor 33; Transcription factor. Interacts specifically with the W box (5'-TTGAC[CT]-3'), a frequently occurring elicitor-responsive cis- acting element. Involved in defense responses. Required for resistance to the necrotrophic fungal pathogen B.cinerea. Regulates the antagonistic relationship between defense pathways mediating responses to the bacterial pathogen P. syringae and the necrotrophic pathogen B.cinerea. Required for the phytoalexin camalexin synthesis following infection with B.cinerea. Acts as positive regulator of the camalexin biosynthetic ge [...] (519 aa) | ||||
PIF4 | Transcription factor PIF4; Transcription factor acting negatively in the phytochrome B signaling pathway. May regulate the expression of a subset of genes involved in cell expansion by binding to the G-box motif (By similarity). Activated by CRY1 and CRY2 in response to low blue light (LBL) by direct binding at chromatin on E-box variant 5'-CA[CT]GTG-3' to stimulate specific gene expression to adapt global physiology (e.g. hypocotyl elongation in low blue light). Belongs to the bHLH protein family. (430 aa) | ||||
SPP3A | Probable sucrose-phosphatase 3a; Catalyzes the final step of sucrose synthesis. (425 aa) | ||||
SPP3B | Probable sucrose-phosphatase 3b; Catalyzes the final step of sucrose synthesis; Belongs to the sucrose phosphatase family. (423 aa) | ||||
ARR1 | Two-component response regulator ARR1; Transcriptional activator that binds specifically to the DNA sequence 5'-[AG]GATT-3'. Functions as a response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Could directly activate some type-A response regulators in response to cytokinins. Regulates SHY2 by binding to its promoter. Involved in the root-meristem size determination through the regulation of cell differentiation. Belon [...] (690 aa) | ||||
SRK2E | Serine/threonine-protein kinase SRK2E; Activator of the abscisic acid (ABA) signaling pathway that regulates numerous ABA responses, such as stomata closure in response to drought, darkness, high CO(2), plant pathogens, or decreases in atmospheric relative humidity (RH). Involved in the resistance to drought by avoiding water loss. Required for the stomata closure mediated by pathogen-associated molecular pattern (PAMPs) (e.g. flg22 and LPS) of pathogenic bacteria such as P.syringae pv. tomato (Pst) and E.coli O157:H7. As a plant defense process, stomata are closed transiently in order [...] (362 aa) | ||||
SPS1-2 | Sucrose-phosphate synthase 1; Plays a major role in photosynthetic sucrose synthesis by catalyzing the rate-limiting step of sucrose biosynthesis from UDP- glucose and fructose- 6-phosphate. Involved in the regulation of carbon partitioning in the leaves of plants. May regulate the synthesis of sucrose and therefore play a major role as a limiting factor in the export of photoassimilates out of the leaf. Plays a role for sucrose availability that is essential for plant growth and fiber elongation. Required for nectar secretion. (1043 aa) | ||||
AUX1 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] (485 aa) | ||||
F28G11.11 | Probable fructokinase-6, chloroplastic; May play an important role in maintaining the flux of carbon towards starch formation; Belongs to the carbohydrate kinase PfkB family. (384 aa) | ||||
AHK3 | Histidine kinase 3; Cytokinins (CK) receptor related to bacterial two-component regulators. Functions as a histidine kinase and transmits the stress signal to a downstream MAPK cascade. This protein undergoes an ATP- dependent autophosphorylation at a conserved histidine residue in the kinase core, and a phosphoryl group is then transferred to a conserved aspartate residue in the receiver domain. In the presence of cytokinin, feeds phosphate to phosphorelay-integrating histidine phosphotransfer protein (HPt) and activates subsequent cascade. Involved in meristems establishment in seedl [...] (1036 aa) | ||||
AHK2 | Histidine kinase 2; Cytokinins (CK) receptor related to bacterial two-component regulators. Functions as a histidine kinase and transmits the stress signal to a downstream MAPK cascade. This protein undergoes an ATP- dependent autophosphorylation at a conserved histidine residue in the kinase core, and a phosphoryl group is then transferred to a conserved aspartate residue in the receiver domain. In the presence of cytokinin, feeds phosphate to phosphorelay-integrating histidine phosphotransfer protein (HPt) and activates subsequent cascade. Involved in meristems establishment in seedl [...] (1176 aa) | ||||
F11I4.14 | Auxin-responsive GH3 family protein. (525 aa) | ||||
SPP1 | Probable sucrose-phosphatase 1; Catalyzes the final step of sucrose synthesis. (423 aa) | ||||
RGL1 | DELLA protein RGL1; Probable transcriptional regulator that acts as a repressor of the gibberellin (GA) signaling pathway. No effect of the BOI proteins on its stability. Probably acts by participating in large multiprotein complexes that repress transcription of GA-inducible genes. Has overlapping but distinct roles in GA signaling compared to RGA and GAI. Regulates the floral development. May also participate in seed germination and in ovule and anther development. Its activity is probably regulated by other phytohormones such as auxin and ethylene. (511 aa) | ||||
SRK2B | Serine/threonine-protein kinase SRK2B; Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. (361 aa) | ||||
APRR6 | Putative two-component response regulator-like APRR6. (755 aa) | ||||
HAB1 | Protein phosphatase 2C 16; Key component and repressor of the abscisic acid (ABA) signaling pathway that regulates numerous ABA responses, such as stomatal closure, seed germination and inhibition of vegetative growth. Confers enhanced sensitivity to drought. Belongs to the PP2C family. (511 aa) | ||||
SRK2H | Serine/threonine-protein kinase SRK2H; Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. (360 aa) | ||||
ARR18 | Two-component response regulator ARR18; Transcriptional activator that binds specifically to the DNA sequence 5'-[AG]GATT-3'. Functions as a response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Could directly activate some type-A response regulators in response to cytokinins (By similarity). (635 aa) | ||||
K17N15.2 | Auxin-responsive GH3 family protein. (581 aa) | ||||
SAG113 | Probable protein phosphatase 2C 78; Acts as negative regulator of abscisic acid (ABA) signaling for stomatal closure in leaves, and controls water loss during leaf senescence. Activated by the NAC029/NAP transcription factor during ABA signaling in senescing leaves. Functions as negative regulator of osmotic stress and ABA signaling. Acts as negative regulator of response to drought. Belongs to the PP2C family. (413 aa) | ||||
APRR4 | Putative two-component response regulator-like APRR4; Transcriptional activator that binds specifically to the DNA sequence 5'-[AG]GATT-3'. (292 aa) | ||||
MIO24.3 | Probable fructokinase-7; May play an important role in maintaining the flux of carbon towards starch formation. (343 aa) | ||||
AHG1 | Probable protein phosphatase 2C 75; Negative regulator of abscisic acid (ABA) responses during seed germination; Belongs to the PP2C family. (416 aa) | ||||
ARR17 | Two-component response regulator ARR17; Functions as response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Type-A response regulators seem to act as negative regulators of the cytokinin signaling (By similarity). (153 aa) | ||||
SUS6 | Sucrose synthase 6; Sucrose-cleaving enzyme that provides UDP-glucose and fructose for various metabolic pathways. Functions in callose synthesis at the site of phloem sieve elements. (942 aa) | ||||
GAPC2 | Glyceraldehyde-3-phosphate dehydrogenase GAPC2, cytosolic; Key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3- phospho-D-glyceroyl phosphate. Essential for the maintenance of cellular ATP levels and carbohydrate metabolism (By similarity). Binds DNA in vitro. (338 aa) | ||||
ARR11 | Two-component response regulator ARR11; Transcriptional activator that binds specifically to the DNA sequence 5'-[AG]GATT-3'. Functions as a response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Could directly activate some type-A response regulators in response to cytokinins (By similarity); Belongs to the ARR family. Type-B subfamily. (521 aa) | ||||
SPS2-2 | Probable sucrose-phosphate synthase 2; Plays a role in photosynthetic sucrose synthesis by catalyzing the rate-limiting step of sucrose biosynthesis from UDP- glucose and fructose- 6-phosphate. Involved in the regulation of carbon partitioning in the leaves of plants. May regulate the synthesis of sucrose and therefore play a major role as a limiting factor in the export of photoassimilates out of the leaf. Plays a role for sucrose availability that is essential for plant growth and fiber elongation. Required for nectar secretion. (1047 aa) | ||||
GH3.17 | Indole-3-acetic acid-amido synthetase GH3.17; Catalyzes the synthesis of indole-3-acetic acid (IAA)-amino acid conjugates, providing a mechanism for the plant to cope with the presence of excess auxin. Strongly reactive with Glu, Gln, Trp, Asp, Ala, Leu, Phe, Gly, Tyr, Met, Ile and Val. Appears to favor Glu over Asp while the other GH3 favor Asp over Glu. Little or no product formation with His, Ser, Thr, Arg, Lys, or Cys. Also active on pyruvic and butyric acid analogs of IAA, PAA and the synthetic auxin naphthaleneacetic acid (NAA). The two chlorinated synthetic auxin herbicides 2,4- [...] (609 aa) | ||||
HXK3 | Hexokinase-like 1 protein; Fructose and glucose phosphorylating enzyme. Belongs to the hexokinase family. (493 aa) | ||||
PGK1 | Phosphoglycerate kinase 1, chloroplastic; Belongs to the phosphoglycerate kinase family. (481 aa) | ||||
RGL3 | DELLA protein RGL3; Probable transcriptional regulator that acts as a repressor of the gibberellin (GA) signaling pathway. No effect of the BOI proteins on its stability. Probably acts by participating in large multiprotein complexes that repress transcription of GA-inducible genes. Its activity may be regulated by phytohormones such as auxin and ethylene (By similarity); Belongs to the GRAS family. DELLA subfamily. (523 aa) | ||||
Q9LJM5_ARATH | Pathogenesis-related protein-like; Belongs to the CRISP family. (161 aa) | ||||
T21E18.8 | Probable fructokinase-2; May play an important role in maintaining the flux of carbon towards starch formation. (329 aa) | ||||
T21E18.7 | Probable fructokinase-3; May play an important role in maintaining the flux of carbon towards starch formation. (345 aa) | ||||
HAB2 | Protein phosphatase 2C 7; Key component and repressor of the abscisic acid (ABA) signaling pathway that regulates numerous ABA responses, such as stomatal closure, seed germination and inhibition of vegetative growth. (511 aa) | ||||
AIP1 | Protein phosphatase 2C 3; Involved in the negative regulation of the K(+) potassium channel AKT1 by its dephosphorylation, antagonistically to CIPK proteins (e.g. CIPK23). Functions as positive regulator of abscisic acid-mediated cell signaling during seedling growth. Involved in the regulation of seed dormancy. Acts as negative regulator of seed dormancy by inhibiting abscisic signaling and subsequently activating gibberellic acid signaling ; Belongs to the PP2C family. (442 aa) | ||||
F2J10.6 | F2J10.6 protein; Belongs to the CRISP family. (161 aa) | ||||
HKL1 | Hexokinase-3; Fructose and glucose phosphorylating enzyme (By similarity). May be involved in the phosphorylation of glucose during the export from mitochondrion to cytosol (By similarity). (498 aa) | ||||
4CLL1 | 4-coumarate--CoA ligase-like 1; Belongs to the ATP-dependent AMP-binding enzyme family. (542 aa) | ||||
GH3.4 | Indole-3-acetic acid-amido synthetase GH3.4; Catalyzes the synthesis of indole-3-acetic acid (IAA)-amino acid conjugates, providing a mechanism for the plant to cope with the presence of excess auxin. Strongly reactive with Glu, Gln, Trp, Asp, Ala, Leu, Phe, Gly, Tyr, Met, Ile and Val. Little or no product formation with His, Ser, Thr, Arg, Lys, or Cys. Also active on pyruvic and butyric acid analogs of IAA, PAA and the synthetic auxin naphthaleneacetic acid (NAA). The two chlorinated synthetic auxin herbicides 2,4-D and 3,6-dichloro-o-anisic acid (dicamba) cannot be used as substrates [...] (597 aa) | ||||
GAI | DELLA protein GAI; Transcriptional regulator that acts as a repressor of the gibberellin (GA) signaling pathway. Transcription coactivator of the zinc finger transcription factors GAF1/IDD2 and ENY/IDD1 in regulation of gibberellin homeostasis and signaling. No effect of the BOI proteins on its stability. Probably acts by participating in large multiprotein complexes that repress transcription of GA-inducible genes. Positively regulates XERICO expression. In contrast to RGA, it is less sensitive to GA. Its activity is probably regulated by other phytohormones such as auxin and ethylene [...] (533 aa) | ||||
GH3.6 | Indole-3-acetic acid-amido synthetase GH3.6; Catalyzes the synthesis of indole-3-acetic acid (IAA)-amino acid conjugates, providing a mechanism for the plant to cope with the presence of excess auxin. Strongly reactive with Glu, Gln, Trp, Asp, Ala, Leu, Phe, Gly, Tyr, Met, Ile and Val. Little or no product formation with His, Ser, Thr, Arg, Lys, or Cys. Also active on pyruvic and butyric acid analogs of IAA, PAA and the synthetic auxin naphthaleneacetic acid (NAA). The two chlorinated synthetic auxin herbicides 2,4-D and 3,6-dichloro-o-anisic acid (dicamba) cannot be used as substrates [...] (612 aa) | ||||
4CL4 | 4-coumarate--CoA ligase 4; Produces CoA thioesters of a variety of hydroxy- and methoxy- substituted cinnamic acids, which are used to synthesize several phenylpropanoid-derived compounds, including anthocyanins, flavonoids, isoflavonoids, coumarins, lignin, suberin and wall-bound phenolics. (570 aa) | ||||
SUS4 | Sucrose synthase 4; Sucrose-cleaving enzyme that provides UDP-glucose and fructose for various metabolic pathways; Belongs to the glycosyltransferase 1 family. Plant sucrose synthase subfamily. (808 aa) | ||||
ARR21 | Putative two-component response regulator ARR21; Putative transcriptional activator that binds specifically to the DNA sequence 5'-[AG]GATT-3'. Functions as response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Could directly activate some type-A response regulators in response to cytokinins (By similarity); Belongs to the ARR family. Type-B subfamily. (613 aa) | ||||
T31B5_170 | Auxin-responsive GH3 family protein. (587 aa) | ||||
GH3.12 | 4-substituted benzoates-glutamate ligase GH3.12; Catalyzes the conjugation of specific amino acids (e.g. Glu and possibly His, Lys, and Met) to their preferred acyl substrates (e.g. 4-substituted benzoates), in a magnesium ion- and ATP-dependent manner. Can use 4-substituted benzoates such as 4-aminobenzoate (pABA), 4-fluorobenzoate and 4-hydroxybenzoate (4-HBA), and, to a lesser extent, benzoate, vanillate and trans-cinnamate, but not 2-substituted benzoates and salicylic acid (SA), as conjugating acyl substrates. Involved in both basal and induced resistance in a SA-dependent manner. [...] (575 aa) | ||||
ARR20 | Putative two-component response regulator ARR20; Putative transcriptional activator that binds specifically to the DNA sequence 5'-[AG]GATT-3'. Functions as response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Could directly activate some type-A response regulators in response to cytokinins (By similarity). (426 aa) | ||||
SBE2.2 | 1,4-alpha-glucan-branching enzyme 2-2, chloroplastic/amyloplastic; Catalyzes the formation of the alpha-1,6-glucosidic linkages in starch by scission of a 1,4-alpha-linked oligosaccharide from growing alpha-1,4-glucan chains and the subsequent attachment of the oligosaccharide to the alpha-1,6 position. Belongs to the glycosyl hydrolase 13 family. GlgB subfamily. (805 aa) | ||||
4CLL7 | 4-coumarate--CoA ligase-like 7; Contributes to jasmonic acid biosynthesis by initiating the beta-oxidative chain shortening of its precursors. (544 aa) | ||||
SUS3 | Sucrose synthase 3; Sucrose-cleaving enzyme that provides UDP-glucose and fructose for various metabolic pathways. Modulates metabolic homeostasis and direct carbon towards starch synthesis in developing seeds. (809 aa) | ||||
T16L24.30 | Probable fructokinase-4; May play an important role in maintaining the flux of carbon towards starch formation. (326 aa) | ||||
NPR6 | Regulatory protein NPR6; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Acts redundantly with BOP2. BOP1/2 promote leaf and floral meristem fate and determinacy in a pathway targeting AP1 and AGL24. BOP1/2 act as transcriptional co-regulators through direct interaction with TGA factors, including PAN, a direct regulator of AP1. Controls lateral organ fate through positive regulation of adaxial-abaxial polarity genes ATHB-14/PHB [...] (467 aa) | ||||
ARR19 | Putative two-component response regulator ARR19; Putative transcriptional activator that binds specifically to the DNA sequence 5'-[AG]GATT-3'. Functions as response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Could directly activate some type-A response regulators in response to cytokinins (By similarity); Belongs to the ARR family. Type-B subfamily. (407 aa) | ||||
SRK2C | Serine/threonine-protein kinase SRK2C; Involved in gene regulation and confers tolerance to drought and osmotic stress; Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. (343 aa) | ||||
UGP2 | UTP--glucose-1-phosphate uridylyltransferase 2; Converts glucose 1-phosphate to UDP-glucose, which is the major glycosyl donor for polysaccharides. Acts redundantly with UGP1 and is essential for the synthesis of sucrose, starch and cell wall, and callose deposition; Belongs to the UDPGP type 1 family. (469 aa) | ||||
PPC1 | Phosphoenolpyruvate carboxylase 1; Through the carboxylation of phosphoenolpyruvate (PEP) it forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle. Contributes probably to the adaptation to inorganic phosphate (Pi) deprivation; Belongs to the PEPCase type 1 family. (967 aa) | ||||
4CL2 | 4-coumarate--CoA ligase 2; Produces CoA thioesters of a variety of hydroxy- and methoxy- substituted cinnamic acids, which are used to synthesize several phenylpropanoid-derived compounds, including anthocyanins, flavonoids, isoflavonoids, coumarins, lignin, suberin and wall-bound phenolics. (556 aa) | ||||
4CL3 | 4-coumarate--CoA ligase 3; Produces CoA thioesters of a variety of hydroxy- and methoxy- substituted cinnamic acids, which are used to synthesize several phenylpropanoid-derived compounds, including anthocyanins, flavonoids, isoflavonoids, coumarins, lignin, suberin and wall-bound phenolics; Belongs to the ATP-dependent AMP-binding enzyme family. (561 aa) | ||||
EIN2 | Ethylene-insensitive protein 2; Central factor in signaling pathways regulated by ethylene (ET), and involved in various processes including development, plant defense, senescence, nucleotide sugar flux, and tropisms. Necessary for ethylene-mediated gene regulation, and for the induction of some genes by ozone. Acts downstream of ET receptors, and upstream of ethylene regulated transcription factors. Required for cytokinin-mediated processes. Seems to be implicated in cross-talk between ET, jasmonate and other pathways. Probably not involved in iron uptake. Has a short half-life and un [...] (1294 aa) | ||||
PGK3 | Phosphoglycerate kinase 3, cytosolic; Belongs to the phosphoglycerate kinase family. (401 aa) | ||||
GAPCP1 | Glyceraldehyde-3-phosphate dehydrogenase GAPCP1, chloroplastic; Involved in plastidial glycolytic pathway and plays a specific role in glycolytic energy production in non-green plastids and chloroplasts. Essential for breakdown of starch to form sucrose for export to non-photosynthetic tissues, and to generate primary metabolites for anabolic pathways such as fatty acid and amino acid synthesis. Plays an important role in plant development by providing substrates for the phosphorylated pathway of serine biosynthesis in roots. Plays a crucial role in pollen development. Functionally red [...] (422 aa) | ||||
ARR5 | Two-component response regulator ARR5; Functions as response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Type-A response regulators seem to act as negative regulators of the cytokinin signaling. Belongs to the ARR family. Type-A subfamily. (184 aa) | ||||
ARR16 | Two-component response regulator ARR16; Functions as response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Type-A response regulators seem to act as negative regulators of the cytokinin signaling. Belongs to the ARR family. Type-A subfamily. (164 aa) | ||||
T28P16.12 | Probable fructokinase-1; May play an important role in maintaining the flux of carbon towards starch formation. (325 aa) | ||||
SPP2 | Probable sucrose-phosphatase 2; Catalyzes the final step of sucrose synthesis. (422 aa) | ||||
JAR1 | Jasmonoyl--L-amino acid synthetase JAR1; Catalyzes the synthesis of jasmonates-amino acid conjugates by adenylation; can use Ile and, in vitro at least, Val, Leu and Phe as conjugating amino acids on jasmonic acid (JA) and 9,10-dihydro-JA substrates, and to a lower extent, on 3-oxo-2-(2Z-pentenyl)- cyclopentane-1-butyric acid (OPC-4) and 12-hydroxy-JA (12-OH-JA). Can synthesize adenosine 5-tetraphosphate in vitro. Required for the JA- mediated signaling pathway that regulates many developmental and defense mechanisms, including growth root inhibition, vegetative storage proteins (VSPs) [...] (575 aa) | ||||
EBF1 | EIN3-binding F-box protein 1; Component of SCF(EBF1) E3 ubiquitin ligase complexes, which may mediate the ubiquitination and subsequent proteasomal degradation of target proteins (probably including EIN3 and EIL1). Regulator of the ethylene signaling cascade by modulating the stability of EIN3 and EIL1 proteins. Confers insensitivity to ethylene. (628 aa) | ||||
RGA | DELLA protein RGA; Probable transcriptional regulator that acts as a repressor of the gibberellin (GA) signaling pathway. Probably acts by participating in large multiprotein complexes that repress transcription of GA-inducible genes. Positively regulates XERICO expression in seeds. Upon GA application, it is degraded by the proteasome, allowing the GA signaling pathway. Compared to other DELLA proteins, it is the most sensitive to GA application. No effect of the BOI proteins on its stability. Its activity is probably regulated by other phytohormones such as auxin and ethylene, attenu [...] (587 aa) | ||||
SRK2F | Serine/threonine-protein kinase SRK2F; Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. (350 aa) | ||||
PAL4 | Phenylalanine ammonia-lyase 4; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. (707 aa) | ||||
NPR2 | Regulatory protein NPR2; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. (600 aa) | ||||
GH3.2 | Indole-3-acetic acid-amido synthetase GH3.2; Catalyzes the synthesis of indole-3-acetic acid (IAA)-amino acid conjugates, providing a mechanism for the plant to cope with the presence of excess auxin. Strongly reactive with Glu, Gln, Trp, Asp, Ala, Leu, Phe, Gly, Tyr, Met, Ile and Val. Little or no product formation with His, Ser, Thr, Arg, Lys, or Cys. Also active on pyruvic and butyric acid analogs of IAA, PAA and the synthetic auxin naphthaleneacetic acid (NAA). The two chlorinated synthetic auxin herbicides 2,4-D and 3,6-dichloro-o-anisic acid (dicamba) cannot be used as substrates [...] (549 aa) | ||||
HKL3 | Probable hexokinase-like 2 protein; Fructose and glucose phosphorylating enzyme. (493 aa) | ||||
GH3.10 | Indole-3-acetic acid-amido synthetase GH3.10; Catalyzes the synthesis of indole-3-acetic acid (IAA)-amino acid conjugates, providing a mechanism for the plant to cope with the presence of excess auxin (By similarity). Involved in red light- specific hypocotyl elongation. May act downstream of a red light signal transduction and determine the degree of hypocotyl elongation ; Belongs to the IAA-amido conjugating enzyme family. (591 aa) | ||||
PRB1 | Pathogenesis-related protein 1; Probably involved in the defense reaction of plants against pathogens. (161 aa) | ||||
NPR5 | Regulatory protein NPR5; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Acts redundantly with BOP2. BOP1/2 promote leaf and floral meristem fate and determinacy in a pathway targeting AP1 and AGL24. BOP1/2 act as transcriptional co-regulators through direct interaction with TGA factors, including PAN, a direct regulator of AP1. Controls lateral organ fate through positive regulation of adaxial-abaxial polarity genes ATHB-14/PHB [...] (491 aa) | ||||
ARR13 | Putative two-component response regulator ARR13; Putative transcriptional activator that binds specifically to the DNA sequence 5'-[AG]GATT-3'. Functions as response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Could directly activate some type-A response regulators in response to cytokinins (By similarity); Belongs to the ARR family. Type-B subfamily. (572 aa) | ||||
HAI3 | Probable protein phosphatase 2C 24. (362 aa) | ||||
ARR2 | Two-component response regulator ARR2; Transcriptional activator that binds specifically to the DNA sequence 5'-[AG]GATT-3'. Functions as a response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Could directly activate some type-A response regulators in response to cytokinins. Involved in the expression of nuclear genes for components of mitochondrial complex I. Promotes cytokinin-mediated leaf longevity. Involved in th [...] (664 aa) | ||||
ARR6 | Two-component response regulator ARR6; Functions as response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Type-A response regulators seem to act as negative regulators of the cytokinin signaling. Belongs to the ARR family. Type-A subfamily. (186 aa) | ||||
ARR7 | Two-component response regulator ARR7; Functions as response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Type-A response regulators seem to act as negative regulators of the cytokinin signaling. Belongs to the ARR family. Type-A subfamily. (206 aa) | ||||
ARR3 | Two-component response regulator ARR3; Functions as response regulator involved in His-to-Asp phosphorelay signal transduction system. Phosphorylation of the Asp residue in the receiver domain activates the ability of the protein to promote the transcription of target genes. Type-A response regulators seem to act as negative regulators of the cytokinin signaling. (231 aa) | ||||
A0A1P8ARU2 | Phosphotransferase. (186 aa) | ||||
F11I4.15 | Auxin-responsive GH3 family protein. (576 aa) | ||||
SBE3 | 1,4-alpha-glucan-branching enzyme 3, chloroplastic/amyloplastic; Catalyzes the formation of the alpha-1,6-glucosidic linkages in starch by scission of a 1,4-alpha-linked oligosaccharide from growing alpha-1,4-glucan chains and the subsequent attachment of the oligosaccharide to the alpha-1,6 position. Essential during embryogenesis; Belongs to the glycosyl hydrolase 13 family. GlgB subfamily. (899 aa) | ||||
SPS4 | Probable sucrose-phosphate synthase 4; Plays a role in photosynthetic sucrose synthesis by catalyzing the rate-limiting step of sucrose biosynthesis from UDP- glucose and fructose- 6-phosphate. Involved in the regulation of carbon partitioning in the leaves of plants. May regulate the synthesis of sucrose and therefore play a major role as a limiting factor in the export of photoassimilates out of the leaf. Plays a role for sucrose availability that is essential for plant growth and fiber elongation; Belongs to the glycosyltransferase 1 family. (1050 aa) | ||||
T22N19.10 | Auxin-responsive GH3 family protein. (672 aa) | ||||
T22N19.30 | Auxin-responsive GH3 family protein. (624 aa) | ||||
T29J13.130 | Histidine containing phosphotransfer protein. (114 aa) | ||||
SUS5 | Sucrose synthase 5; Sucrose-cleaving enzyme that provides UDP-glucose and fructose for various metabolic pathways. Functions in callose synthesis at the site of phloem sieve elements. (836 aa) | ||||
ABI2 | Protein phosphatase 2C 77; Repressor of the abscisic acid (ABA) signaling pathway that regulates numerous ABA responses, such as stomatal closure, osmotic water permeability of the plasma membrane (Pos), high light stress, response to glucose, seed germination and inhibition of vegetative growth. During the stomatal closure regulation, modulates the inward calcium-channel permeability as well as H(2)O(2) and oxidative burst in response to ABA and dehydration. Represses GHR1 and, to some extent, SRK2E/OST1, kinases involved in the regulation of SLAC1-dependent stomatal closure. Controls [...] (423 aa) | ||||
GH3.3 | Indole-3-acetic acid-amido synthetase GH3.3; Catalyzes the synthesis of indole-3-acetic acid (IAA)-amino acid conjugates, providing a mechanism for the plant to cope with the presence of excess auxin. Strongly reactive with Glu, Gln, Trp, Asp, Ala, Leu, Phe, Gly, Tyr, Met, Ile and Val. Little or no product formation with His, Ser, Thr, Arg, Lys, or Cys. Also active on pyruvic and butyric acid analogs of IAA, PAA and the synthetic auxin naphthaleneacetic acid (NAA). The two chlorinated synthetic auxin herbicides 2,4-D and 3,6-dichloro-o-anisic acid (dicamba) cannot be used as substrates [...] (595 aa) | ||||
PPDK | Pyruvate, phosphate dikinase 1, chloroplastic; Formation of phosphoenolpyruvate. May be involved in regulating the flux of carbon into starch and fatty acids of seeds and in the remobilization of nitrogen reserves in senescing leaves. (963 aa) | ||||
SBE2.1 | 1,4-alpha-glucan-branching enzyme 2-1, chloroplastic/amyloplastic; Catalyzes the formation of the alpha-1,6-glucosidic linkages in starch by scission of a 1,4-alpha-linked oligosaccharide from growing alpha-1,4-glucan chains and the subsequent attachment of the oligosaccharide to the alpha-1,6 position. Belongs to the glycosyl hydrolase 13 family. GlgB subfamily. (858 aa) | ||||
EIN3 | Protein ETHYLENE INSENSITIVE 3; Probable transcription factor acting as a positive regulator in the ethylene response pathway. Is required for ethylene responsiveness in adult plant tissues. Binds a primary ethylene response element present in the ETHYLENE-RESPONSE-FACTOR1 promoter with consequence to activate the transcription of this gene. (628 aa) | ||||
T26J12.7 | Auxin-responsive GH3 family protein. (578 aa) |