Your Input: | |||||
RPM1 | Disease resistance protein RPM1; Disease resistance (R) protein that specifically recognizes the AvrRpm1 type III effector avirulence protein from Pseudomonas syringae. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth. Acts via its interaction with RIN4, and probably triggers the plant resistance when RIN4 is phosphorylated by AvrRpm1. It is then degraded at the onset of th [...] (926 aa) | ||||
PAL1 | Phenylalanine ammonia-lyase 1; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. (725 aa) | ||||
PAL2 | Phenylalanine ammonia-lyase 2; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. (717 aa) | ||||
PAL3 | Phenylalanine ammonia-lyase 3; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton. (694 aa) | ||||
AP2 | Floral homeotic protein APETALA 2; Probable transcriptional activator that promotes early floral meristem identity. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes. Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and [...] (432 aa) | ||||
CAM7 | Calmodulin-7; Calmodulin mediates the control of a large number of enzymes, ion channels and other proteins by Ca(2+). Among the enzymes to be stimulated by the calmodulin-Ca(2+) complex are a number of protein kinases and phosphatases. Activates MPK8 in vitro. (149 aa) | ||||
CYP73A5 | Trans-cinnamate 4-monooxygenase; Controls carbon flux to pigments essential for pollination or UV protection, to numerous pytoalexins synthesized by plants when challenged by pathogens, and to lignins. (505 aa) | ||||
NPR1 | Regulatory protein NPR1; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Key positive regulator of the SA-dependent signaling pathway that negatively regulates JA-dependent signaling pathway. Mediates the binding of TGA factors to the as-1 motif found in the pathogenesis-related PR-1 gene, leading to the transcriptional regulation of the gene defense. Controls the onset of systemic acquired resistance (SAR). Upon SAR induction, [...] (593 aa) | ||||
CAM6 | Calmodulin-6; Calmodulin mediates the control of a large number of enzymes, ion channels and other proteins by Ca(2+). Among the enzymes to be stimulated by the calmodulin-Ca(2+) complex are a number of protein kinases and phosphatases. (149 aa) | ||||
RPS2 | Disease resistance protein RPS2; Disease resistance (R) protein that specifically recognizes the AvrRpt2 type III effector avirulence protein from Pseudomonas syringae. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth. Acts via its interaction with RIN4, and probably triggers the plant resistance when RIN4 is degraded by AvrRpt2. (909 aa) | ||||
4CL1 | 4-coumarate--CoA ligase 1; Produces CoA thioesters of a variety of hydroxy- and methoxy- substituted cinnamic acids, which are used to synthesize several phenylpropanoid-derived compounds, including anthocyanins, flavonoids, isoflavonoids, coumarins, lignin, suberin and wall-bound phenolics; Belongs to the ATP-dependent AMP-binding enzyme family. (561 aa) | ||||
CYP84A1 | Cytochrome P450 84A1. (520 aa) | ||||
TIR1 | Protein TRANSPORT INHIBITOR RESPONSE 1; Auxin receptor that mediates Aux/IAA proteins proteasomal degradation and auxin-regulated transcription. The SCF(TIR1) E3 ubiquitin ligase complex is involved in auxin-mediated signaling pathway that regulate root and hypocotyl growth, lateral root formation, cell elongation, and gravitropism. Appears to allow pericycle cells to overcome G2 arrest prior to lateral root development. Plays a role in ethylene signaling in roots. Confers sensitivity to the virulent bacterial pathogen P.syringae. (594 aa) | ||||
NPR4 | Regulatory protein NPR4; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Involved in the regulation of basal defense responses against pathogens, and may be implicated in the cross-talk between the SA- and JA-dependent signaling pathways. (574 aa) | ||||
4CLL9 | 4-coumarate--CoA ligase-like 9; Contributes to jasmonic acid biosynthesis by initiating the beta-oxidative chain shortening of its precursors. Converts 12-oxo- phytodienoic acid (OPDA) into OPDA-CoA; Belongs to the ATP-dependent AMP-binding enzyme family. (562 aa) | ||||
4CLL6 | 4-coumarate--CoA ligase-like 6; Belongs to the ATP-dependent AMP-binding enzyme family. (566 aa) | ||||
PTI11 | PTI1-like tyrosine-protein kinase 1; Belongs to the protein kinase superfamily. Tyr protein kinase family. (361 aa) | ||||
NPR3 | Regulatory protein NPR3; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Involved in the regulation of basal defense responses against pathogens. (586 aa) | ||||
GSTF8 | Glutathione S-transferase F8, chloroplastic; In vitro, possesses glutathione S-transferase activity toward 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione peroxidase activity toward cumene hydroperoxide and linoleic acid-13-hydroperoxide. May be involved in the conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles and have a detoxification role against certain herbicides. Belongs to the GST superfamily. Phi family. (263 aa) | ||||
T25K17.30 | Probable caffeoyl-CoA O-methyltransferase At4g26220; Methylates caffeoyl-CoA to feruloyl-CoA and 5- hydroxyferuloyl-CoA to sinapoyl-CoA. Plays a role in the synthesis of feruloylated polysaccharides. Involved in the reinforcement of the plant cell wall. Also involved in the responding to wounding or pathogen challenge by the increased formation of cell wall-bound ferulic acid polymers (By similarity); Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-dependent O-methyltransferase family. CCoAMT subfamily. (232 aa) | ||||
CCOAMT | Putative caffeoyl-CoA O-methyltransferase At1g67980; Methylates caffeoyl-CoA to feruloyl-CoA and 5- hydroxyferuloyl-CoA to sinapoyl-CoA. Plays a role in the synthesis of feruloylated polysaccharides. Involved in the reinforcement of the plant cell wall. Also involved in the responding to wounding or pathogen challenge by the increased formation of cell wall-bound ferulic acid polymers (By similarity). (232 aa) | ||||
CYP98A9 | Cytochrome P450 98A9; Acts redundantly with CYP98A8 as tricoumaroylspermidine meta- hydroxylase. Involved in phenolamide synthesis, but a recombinant CYP98A9 is unable to hydroxylate triferuloylspermidine. Unable to use 5-O-(4-coumaroyl) D-quinate or 5-O-(4-coumaroyl) shikimate as substrates; Belongs to the cytochrome P450 family. (487 aa) | ||||
CYP98A8 | Cytochrome P450 98A8; Acts redundantly with CYP98A9 as tricoumaroylspermidine meta- hydroxylase. Catalyzes also the meta-hydroxylation of the three triferuloylspermidine phenolic rings. Unable to use 5-O-(4-coumaroyl) D-quinate or 5-O-(4-coumaroyl) shikimate as substrates. (497 aa) | ||||
CP1 | Calcium-binding protein CP1; Binds calcium in vitro. (160 aa) | ||||
PDF1.2A | Defensin-like protein 16; Confers broad-spectrum resistance to pathogens. Has antifungal activity in vitro; Belongs to the DEFL family. (80 aa) | ||||
HST-2 | Shikimate O-hydroxycinnamoyltransferase; Acyltransferase involved in the biosynthesis of lignin. Accepts caffeoyl-CoA and p- coumaroyl-CoA as substrates and transfers the acyl group on both shikimate and quinate acceptors. (433 aa) | ||||
DHAR2 | Glutathione S-transferase DHAR2; Displays a dual function. As a soluble protein, exhibits glutathione-dependent thiol transferase and dehydroascorbate (DHA) reductase activities. Exhibits glutathione-dependent thiol transferase and dehydroascorbate (DHA) reductase activities. Key component of the ascorbate recycling system. Involved in the redox homeostasis, especially in scavenging of ROS under oxidative stresses. Plays a role in ozone tolerance; Belongs to the GST superfamily. DHAR family. (213 aa) | ||||
DHAR1 | Glutathione S-transferase DHAR1, mitochondrial; Displays a dual function. As a soluble protein, exhibits glutathione-dependent thiol transferase and dehydroascorbate (DHA) reductase activities. Key component of the ascorbate recycling system. Involved in the redox homeostasis, especially in scavenging of ROS under oxidative stresses, subsequently to biotic or abiotic inducers. As a peripheral membrane protein, could also function as voltage-gated ion channel. Belongs to the GST superfamily. DHAR family. (213 aa) | ||||
AXR4 | Protein AUXIN RESPONSE 4; Required for the auxin influx facilitator AUX1 polar trafficking and its asymmetric localization within the plasma membrane. Not involved in the PIN proteins localization. (473 aa) | ||||
AFB3 | Protein AUXIN SIGNALING F-BOX 3; Confers sensitivity to the virulent bacterial pathogen P.syringae (By similarity). Component of SCF(ASK-cullin-F-box) E3 ubiquitin ligase complexes, which may mediate the ubiquitination and subsequent proteasomal degradation of target proteins. Auxin receptor that mediates Aux/IAA proteins proteasomal degradation and auxin- regulated transcription. Involved in embryogenesis regulation by auxin. (577 aa) | ||||
4CLL1 | 4-coumarate--CoA ligase-like 1; Belongs to the ATP-dependent AMP-binding enzyme family. (542 aa) | ||||
4CL4 | 4-coumarate--CoA ligase 4; Produces CoA thioesters of a variety of hydroxy- and methoxy- substituted cinnamic acids, which are used to synthesize several phenylpropanoid-derived compounds, including anthocyanins, flavonoids, isoflavonoids, coumarins, lignin, suberin and wall-bound phenolics. (570 aa) | ||||
CARK1 | Receptor-like cytoplasmic kinase 1; Receptor-like cytoplasmic kinase (RLCK) that triggers abscisic acid (ABA) signaling by phosphorylating and activating ABA receptors (e.g. PYL8/RCAR3 and PYR1/RCAR11), which in turn repress ABI1, a negative regulator of ABA responses. Promotes drought tolerance ; Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. (364 aa) | ||||
4CLL7 | 4-coumarate--CoA ligase-like 7; Contributes to jasmonic acid biosynthesis by initiating the beta-oxidative chain shortening of its precursors. (544 aa) | ||||
NPR6 | Regulatory protein NPR6; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Acts redundantly with BOP2. BOP1/2 promote leaf and floral meristem fate and determinacy in a pathway targeting AP1 and AGL24. BOP1/2 act as transcriptional co-regulators through direct interaction with TGA factors, including PAN, a direct regulator of AP1. Controls lateral organ fate through positive regulation of adaxial-abaxial polarity genes ATHB-14/PHB [...] (467 aa) | ||||
T17J13.180 | Serine/threonine protein kinase-like protein; Belongs to the protein kinase superfamily. (361 aa) | ||||
CML45 | Probable calcium-binding protein CML45; Potential calcium sensor. (194 aa) | ||||
4CL2 | 4-coumarate--CoA ligase 2; Produces CoA thioesters of a variety of hydroxy- and methoxy- substituted cinnamic acids, which are used to synthesize several phenylpropanoid-derived compounds, including anthocyanins, flavonoids, isoflavonoids, coumarins, lignin, suberin and wall-bound phenolics. (556 aa) | ||||
4CL3 | 4-coumarate--CoA ligase 3; Produces CoA thioesters of a variety of hydroxy- and methoxy- substituted cinnamic acids, which are used to synthesize several phenylpropanoid-derived compounds, including anthocyanins, flavonoids, isoflavonoids, coumarins, lignin, suberin and wall-bound phenolics; Belongs to the ATP-dependent AMP-binding enzyme family. (561 aa) | ||||
CCR1-2 | Cinnamoyl-CoA reductase 1; Involved in the latter stages of lignin biosynthesis. Catalyzes one of the last steps of monolignol biosynthesis, the conversion of cinnamoyl-CoAs into their corresponding cinnamaldehydes. (344 aa) | ||||
CCR2-2 | Cinnamoyl-CoA reductase 2; Cinnamoyl-CoA reductase probably involved in the formation of phenolic compounds associated with the hypersensitive response. Seems not to be involved in lignin biosynthesis. Belongs to the NAD(P)-dependent epimerase/dehydratase family. Dihydroflavonol-4-reductase subfamily. (332 aa) | ||||
GSTF7 | Glutathione S-transferase F7; May be involved in the conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles and have a detoxification role against certain herbicides; Belongs to the GST superfamily. Phi family. (209 aa) | ||||
PAL4 | Phenylalanine ammonia-lyase 4; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. (707 aa) | ||||
TIR | Toll/interleukin-1 receptor-like protein; Disease resistance protein. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via a direct or indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth (By similarity). (176 aa) | ||||
NPR2 | Regulatory protein NPR2; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. (600 aa) | ||||
NAC017 | NAC domain-containing protein 17; Transcriptional activator activated by proteolytic cleavage through regulated intramembrane proteolysis (RIP). Transcriptional activator that acts as positive regulator of AOX1A during mitochondrial dysfunction. Binds directly to AOX1A promoter. Mediates mitochondrial retrograde signaling. (557 aa) | ||||
NPR5 | Regulatory protein NPR5; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Acts redundantly with BOP2. BOP1/2 promote leaf and floral meristem fate and determinacy in a pathway targeting AP1 and AGL24. BOP1/2 act as transcriptional co-regulators through direct interaction with TGA factors, including PAN, a direct regulator of AP1. Controls lateral organ fate through positive regulation of adaxial-abaxial polarity genes ATHB-14/PHB [...] (491 aa) | ||||
F1C9.19 | Transferase. (666 aa) | ||||
T11J7.12 | Protein kinase superfamily protein; Belongs to the protein kinase superfamily. Tyr protein kinase family. (348 aa) | ||||
PTI13 | PTI1-like tyrosine-protein kinase 3. (408 aa) | ||||
F21D18.32 | Protein kinase superfamily protein; Belongs to the protein kinase superfamily. (363 aa) | ||||
F5A9.20 | S-adenosyl-L-methionine-dependent methyltransferases superfamily protein. (291 aa) | ||||
F14B2.17 | Protein kinase superfamily protein; Belongs to the protein kinase superfamily. Tyr protein kinase family. (440 aa) | ||||
PTI12 | PTI1-like tyrosine-protein kinase 2; Probable tyrosine-protein kinase involved in oxidative burst- mediated signaling leading to specific genes expression. (366 aa) | ||||
CCOAOMT1 | Caffeoyl-CoA O-methyltransferase 1; Methylates caffeoyl-CoA to feruloyl-CoA. Has a very low activity with caffeic acid and esculetin. Involved in scopoletin biosynthesis in roots; Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-dependent O-methyltransferase family. CCoAMT subfamily. (259 aa) | ||||
CNGC2 | Cyclic nucleotide-gated ion channel 2; Acts as cyclic nucleotide-gated ion channel. Permeable to potassium and calcium in a cyclic nucleotide-dependent fashion (cAMP or cGMP). Could also transport lithium, cesium and rubium and displays a strong selectivity against sodium. Seems to directly participate in pathogen-induced calcium influx. May function in homeostasis, re- establishing ionic balance after defense action and/or other stimuli. Could mediate the initiation of the developmentally regulated cell death programs. (726 aa) | ||||
TCHQD | Glutathione S-transferase TCHQD; May be involved in the conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. (266 aa) | ||||
PTI1-4 | Probable receptor-like protein kinase At2g47060; Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. (365 aa) | ||||
CAM1 | Calmodulin-1; Calmodulin mediates the control of a large number of enzymes, ion channels and other proteins by Ca(2+). Among the enzymes to be stimulated by the calmodulin-Ca(2+) complex are a number of protein kinases and phosphatases. (149 aa) | ||||
CAM2 | Calmodulin-2; Calmodulin mediates the control of a large number of enzymes, ion channels and other proteins by Ca(2+). Among the enzymes to be stimulated by the calmodulin-Ca(2+) complex are a number of protein kinases and phosphatases. (149 aa) | ||||
CHS | Chalcone synthase; The primary product of this enzyme is 4,2',4',6'- tetrahydroxychalcone (also termed naringenin-chalcone or chalcone) which can under specific conditions spontaneously isomerize into naringenin. (395 aa) | ||||
CML10 | Calmodulin-like protein 10; Potential calcium sensor. (191 aa) |