Your Input: | |||||
IAA14 | Auxin-responsive protein IAA14; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. (228 aa) | ||||
AMY2 | Probable alpha-amylase 2; Probable alpha-amylase that does not seem to be required for breakdown of transitory starch in leaves. (413 aa) | ||||
PIN4 | Auxin efflux carrier component 4; Acts as a component of the auxin efflux carrier. Plays a role in generating a sink for auxin into columella cells. Maintains the endogenous auxin gradient, which is essential for correct root patterning. Involved in EXO70A3-regulated gravitropic responses in columella cells and in root system architecture (RSA). (616 aa) | ||||
SPS3-2 | Probable sucrose-phosphate synthase 3; Plays a role in photosynthetic sucrose synthesis by catalyzing the rate-limiting step of sucrose biosynthesis from UDP- glucose and fructose- 6-phosphate. Involved in the regulation of carbon partitioning in the leaves of plants. May regulate the synthesis of sucrose and therefore play a major role as a limiting factor in the export of photoassimilates out of the leaf. Plays a role for sucrose availability that is essential for plant growth and fiber elongation. (1062 aa) | ||||
AMY1 | Alpha-amylase 1; Possesses alpha-amylase activity in vitro, but seems not required for breakdown of transitory starch in leaves. (423 aa) | ||||
AMY3 | Alpha-amylase 3, chloroplastic; Possesses endoamylolytic activity in vitro, but seems not required for breakdown of transitory starch in leaves. May be involved in the determination of the final structure of glucans by shortening long linear phospho-oligosaccharides in the chloroplast stroma. Can act on both soluble and insoluble glucan substrates to release small linear and branched malto-oligosaccharides. Works synergistically with beta-amylase toward efficient starch degradation. Has activity against p-nitrophenyl maltoheptaoside (BPNP-G7), amylopectin and beta-limit dextrin. Involv [...] (887 aa) | ||||
SPS1-2 | Sucrose-phosphate synthase 1; Plays a major role in photosynthetic sucrose synthesis by catalyzing the rate-limiting step of sucrose biosynthesis from UDP- glucose and fructose- 6-phosphate. Involved in the regulation of carbon partitioning in the leaves of plants. May regulate the synthesis of sucrose and therefore play a major role as a limiting factor in the export of photoassimilates out of the leaf. Plays a role for sucrose availability that is essential for plant growth and fiber elongation. Required for nectar secretion. (1043 aa) | ||||
AUX1 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] (485 aa) | ||||
PIN1 | Auxin efflux carrier component 1; Acts as a component of the auxin efflux carrier. Seems to be involved in the basipetal auxin transport. Mediates the formation of auxin gradient which is required to ensure correct organogenesis. Coordinated polar localization of PIN1 is directly regulated by the vesicle trafficking process and apical-basal PIN1 polarity also depends on the phosphorylation of conserved serine residues by PID kinase. The ARF-GEF protein GNOM is required for the correct recycling of PIN1 between the plasma membrane and endosomal compartments. (622 aa) | ||||
PIN5 | Auxin efflux carrier component 5; Auxin transporter regulating intracellular auxin homeostasis and metabolism. Mediates the auxin transport from the cytosol into the lumen of the endoplasmic reticulum. May also act as an auxin efflux carrier when located to the cell membrane. PIN5 and PIN8 may have an antagonistic/compensatory activity. Involved in unfolded protein response (UPR) activation. Involved in the control of vein patterning. Promotes vein formation. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. (351 aa) | ||||
SPS2-2 | Probable sucrose-phosphate synthase 2; Plays a role in photosynthetic sucrose synthesis by catalyzing the rate-limiting step of sucrose biosynthesis from UDP- glucose and fructose- 6-phosphate. Involved in the regulation of carbon partitioning in the leaves of plants. May regulate the synthesis of sucrose and therefore play a major role as a limiting factor in the export of photoassimilates out of the leaf. Plays a role for sucrose availability that is essential for plant growth and fiber elongation. Required for nectar secretion. (1047 aa) | ||||
PIN8 | Auxin efflux carrier component 8; Component of the intracellular auxin-transport pathway in the male gametophyte. Involved in the regulation of auxin homeostasis in pollen. Involved in the efflux of auxin from the endoplasmic reticulum into the cytoplasm. PIN5 and PIN8 may have an antagonistic/compensatory activity. Involved in the control of vein patterning. Redundantly with PIN6, inhibits the vein-formation- promoting functions of PIN5. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. (367 aa) | ||||
PIN2 | Auxin efflux carrier component 2; Acts as a component of the auxin efflux carrier. Seems to be involved in the root-specific auxin transport, and mediates the root gravitropism. Its particular localization suggest a role in the translocation of auxin towards the elongation zone. (647 aa) | ||||
PIN3 | Auxin efflux carrier component 3; Acts as a component of the auxin efflux carrier. Seems to be involved in the lateral auxin transport system and mediates tropic growth. Coordinated polar localization of PIN3 is directly regulated by the vesicle trafficking process. (640 aa) | ||||
PIN6 | Auxin efflux carrier component 6; Component of the intracellular auxin-transport pathway. Regulates auxin transport and auxin homeostasis. Directly involved in the regulation of nectar production. Involved in unfolded protein response (UPR) activation. Involved in the control of vein patterning. Redundantly with PIN8, inhibits the vein-formation-promoting functions of PIN5. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. Belongs to the auxin efflux carrier (TC 2.A.69.1) family. (570 aa) | ||||
PIN7 | Auxin efflux carrier component 7; Acts as a component of the auxin efflux carrier. Mediates the initial auxin gradient which contributes to the establishment of the apical-basal axis in early embryogenesis. (619 aa) | ||||
MED13 | Mediator of RNA polymerase II transcription subunit 13; Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene- specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general [...] (1921 aa) | ||||
SPS4 | Probable sucrose-phosphate synthase 4; Plays a role in photosynthetic sucrose synthesis by catalyzing the rate-limiting step of sucrose biosynthesis from UDP- glucose and fructose- 6-phosphate. Involved in the regulation of carbon partitioning in the leaves of plants. May regulate the synthesis of sucrose and therefore play a major role as a limiting factor in the export of photoassimilates out of the leaf. Plays a role for sucrose availability that is essential for plant growth and fiber elongation; Belongs to the glycosyltransferase 1 family. (1050 aa) | ||||
MED12 | Mediator of RNA polymerase II transcription subunit 12; Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene- specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general [...] (2235 aa) | ||||
TPS10 | Probable alpha,alpha-trehalose-phosphate synthase [UDP-forming] 10; In the C-terminal section; belongs to the trehalose phosphatase family. (861 aa) | ||||
IAA9 | Auxin-responsive protein IAA9; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. (338 aa) | ||||
IAA12 | Auxin-responsive protein IAA12; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. (239 aa) | ||||
IAA13 | Auxin-responsive protein IAA13; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. (247 aa) |