node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ABI5 | ABR1 | Q9SJN0 | Q9FGF8 | Protein ABSCISIC ACID-INSENSITIVE 5; Participates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans- activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. Belongs to the bZIP family. ABI5 subfamily. | Ethylene-responsive transcription factor ABR1; Negative regulator of the abscisic acid (ABA) signaling pathway involved in seed germination and in responses to stress conditions. Probably acts as a transcriptional activator. Binds to the GCC-box pathogenesis-related promoter element. May be involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways (By similarity); Belongs to the AP2/ERF transcription factor family. ERF subfamily. | 0.586 |
ABI5 | BZIP8 | Q9SJN0 | Q9CA46 | Protein ABSCISIC ACID-INSENSITIVE 5; Participates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans- activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. Belongs to the bZIP family. ABI5 subfamily. | Basic leucine zipper 8; Belongs to the bZIP family. | 0.926 |
ABI5 | ERF7 | Q9SJN0 | Q9LDE4 | Protein ABSCISIC ACID-INSENSITIVE 5; Participates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans- activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. Belongs to the bZIP family. ABI5 subfamily. | Ethylene-responsive transcription factor 7; Involved in the regulation of gene expression by abscisic acid, stress factors and by components of stress signal transduction pathways. Transcription factor that binds to the GCC-box pathogenesis- related promoter element. Part of a transcriptional repressor complex including a histone deacetylase. | 0.447 |
ABI5 | HDA19 | Q9SJN0 | O22446 | Protein ABSCISIC ACID-INSENSITIVE 5; Participates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans- activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. Belongs to the bZIP family. ABI5 subfamily. | Histone deacetylase 19; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. HDA19 is involved in jasmonic acid and ethylene signaling of pathogen response. Part of a repressor complex including APETALA2 (AP2) and TOPLESS (TPL) that control the expression domains of numerous flora [...] | 0.574 |
ABI5 | PYL4 | Q9SJN0 | O80920 | Protein ABSCISIC ACID-INSENSITIVE 5; Participates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans- activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. Belongs to the bZIP family. ABI5 subfamily. | Abscisic acid receptor PYL4; Receptor for abscisic acid (ABA) required for ABA-mediated responses such as stomatal closure and germination inhibition. Inhibits the activity of group-A protein phosphatases type 2C (PP2Cs) when activated by ABA. Can be activated by both (-)-ABA and (+)-ABA. | 0.793 |
ABI5 | PYL5 | Q9SJN0 | Q9FLB1 | Protein ABSCISIC ACID-INSENSITIVE 5; Participates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans- activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. Belongs to the bZIP family. ABI5 subfamily. | Abscisic acid receptor PYL5; Receptor for abscisic acid (ABA) required for ABA-mediated responses such as stomatal closure and germination inhibition. Inhibits the activity of group-A protein phosphatases type 2C (PP2Cs) in an ABA- independent manner but more efficiently when activated by ABA. Confers enhanced sensitivity to ABA. Can be activated by both (-)-ABA and (+)-ABA. | 0.664 |
ABI5 | PYL6 | Q9SJN0 | Q8S8E3 | Protein ABSCISIC ACID-INSENSITIVE 5; Participates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans- activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. Belongs to the bZIP family. ABI5 subfamily. | Abscisic acid receptor PYL6; Receptor for abscisic acid (ABA) required for ABA-mediated responses such as stomatal closure and germination inhibition. Inhibits the activity of group-A protein phosphatases type 2C (PP2Cs) in an ABA- independent manner but more efficiently when activated by ABA. Can be activated by both (-)-ABA and (+)-ABA. May link ABA and jasmonate signaling pathways by modifying MYC2 transcriptional activity, and regulation of JAZ6 and JAZ8 gene expression by MYC2. | 0.695 |
ABI5 | PYR1 | Q9SJN0 | O49686 | Protein ABSCISIC ACID-INSENSITIVE 5; Participates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans- activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. Belongs to the bZIP family. ABI5 subfamily. | Abscisic acid receptor PYR1; Receptor for abscisic acid (ABA) required for ABA-mediated responses such as stomatal closure and germination inhibition. Inhibits the activity of group-A protein phosphatases type 2C (PP2Cs) when activated by ABA. Can be activated by both (-)-ABA and (+)-ABA. Promotes drought tolerance. | 0.885 |
ABI5 | SRK2D | Q9SJN0 | Q39192 | Protein ABSCISIC ACID-INSENSITIVE 5; Participates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans- activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. Belongs to the bZIP family. ABI5 subfamily. | Serine/threonine-protein kinase SRK2D; Together with SRK2I, key component and activator of the abscisic acid (ABA) signaling pathway that regulates numerous ABA responses, such as seed germination, Pro accumulation, root growth inhibition, dormancy and seedling growth, and, to a lesser extent, stomatal closure; Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. | 0.967 |
ABI5 | SRK2E | Q9SJN0 | Q940H6 | Protein ABSCISIC ACID-INSENSITIVE 5; Participates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans- activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. Belongs to the bZIP family. ABI5 subfamily. | Serine/threonine-protein kinase SRK2E; Activator of the abscisic acid (ABA) signaling pathway that regulates numerous ABA responses, such as stomata closure in response to drought, darkness, high CO(2), plant pathogens, or decreases in atmospheric relative humidity (RH). Involved in the resistance to drought by avoiding water loss. Required for the stomata closure mediated by pathogen-associated molecular pattern (PAMPs) (e.g. flg22 and LPS) of pathogenic bacteria such as P.syringae pv. tomato (Pst) and E.coli O157:H7. As a plant defense process, stomata are closed transiently in order [...] | 0.949 |
ABI5 | SRK2I | Q9SJN0 | Q39193 | Protein ABSCISIC ACID-INSENSITIVE 5; Participates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans- activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. Belongs to the bZIP family. ABI5 subfamily. | Serine/threonine-protein kinase SRK2I; Together with SRK2D, key component and activator of the abscisic acid (ABA) signaling pathway that regulates numerous ABA responses, such as seed germination, Pro accumulation, root growth inhibition, dormancy and seedling growth, and, to a lesser extent, stomatal closure. | 0.949 |
ABI5 | ZEP | Q9SJN0 | Q9FGC7 | Protein ABSCISIC ACID-INSENSITIVE 5; Participates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans- activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. Belongs to the bZIP family. ABI5 subfamily. | Zeaxanthin epoxidase, chloroplastic; Zeaxanthin epoxidase that plays an important role in the xanthophyll cycle and abscisic acid (ABA) biosynthesis. Converts zeaxanthin into antheraxanthin and subsequently violaxanthin. Required for resistance to osmotic and drought stresses, ABA-dependent stomatal closure, seed development and dormancy, modulation of defense gene expression and disease resistance and non-photochemical quencing (NPQ). Through its role in ABA biosynthesis, regulates the expression of stress-responsive genes such as RD29A during osmotic stress and is required for normal [...] | 0.802 |
ABR1 | ABI5 | Q9FGF8 | Q9SJN0 | Ethylene-responsive transcription factor ABR1; Negative regulator of the abscisic acid (ABA) signaling pathway involved in seed germination and in responses to stress conditions. Probably acts as a transcriptional activator. Binds to the GCC-box pathogenesis-related promoter element. May be involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways (By similarity); Belongs to the AP2/ERF transcription factor family. ERF subfamily. | Protein ABSCISIC ACID-INSENSITIVE 5; Participates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans- activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. Belongs to the bZIP family. ABI5 subfamily. | 0.586 |
ABR1 | BZIP8 | Q9FGF8 | Q9CA46 | Ethylene-responsive transcription factor ABR1; Negative regulator of the abscisic acid (ABA) signaling pathway involved in seed germination and in responses to stress conditions. Probably acts as a transcriptional activator. Binds to the GCC-box pathogenesis-related promoter element. May be involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways (By similarity); Belongs to the AP2/ERF transcription factor family. ERF subfamily. | Basic leucine zipper 8; Belongs to the bZIP family. | 0.434 |
BZIP8 | ABI5 | Q9CA46 | Q9SJN0 | Basic leucine zipper 8; Belongs to the bZIP family. | Protein ABSCISIC ACID-INSENSITIVE 5; Participates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans- activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. Belongs to the bZIP family. ABI5 subfamily. | 0.926 |
BZIP8 | ABR1 | Q9CA46 | Q9FGF8 | Basic leucine zipper 8; Belongs to the bZIP family. | Ethylene-responsive transcription factor ABR1; Negative regulator of the abscisic acid (ABA) signaling pathway involved in seed germination and in responses to stress conditions. Probably acts as a transcriptional activator. Binds to the GCC-box pathogenesis-related promoter element. May be involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways (By similarity); Belongs to the AP2/ERF transcription factor family. ERF subfamily. | 0.434 |
BZIP8 | HDA19 | Q9CA46 | O22446 | Basic leucine zipper 8; Belongs to the bZIP family. | Histone deacetylase 19; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. HDA19 is involved in jasmonic acid and ethylene signaling of pathogen response. Part of a repressor complex including APETALA2 (AP2) and TOPLESS (TPL) that control the expression domains of numerous flora [...] | 0.431 |
BZIP8 | PYL4 | Q9CA46 | O80920 | Basic leucine zipper 8; Belongs to the bZIP family. | Abscisic acid receptor PYL4; Receptor for abscisic acid (ABA) required for ABA-mediated responses such as stomatal closure and germination inhibition. Inhibits the activity of group-A protein phosphatases type 2C (PP2Cs) when activated by ABA. Can be activated by both (-)-ABA and (+)-ABA. | 0.604 |
BZIP8 | PYL5 | Q9CA46 | Q9FLB1 | Basic leucine zipper 8; Belongs to the bZIP family. | Abscisic acid receptor PYL5; Receptor for abscisic acid (ABA) required for ABA-mediated responses such as stomatal closure and germination inhibition. Inhibits the activity of group-A protein phosphatases type 2C (PP2Cs) in an ABA- independent manner but more efficiently when activated by ABA. Confers enhanced sensitivity to ABA. Can be activated by both (-)-ABA and (+)-ABA. | 0.436 |
BZIP8 | PYR1 | Q9CA46 | O49686 | Basic leucine zipper 8; Belongs to the bZIP family. | Abscisic acid receptor PYR1; Receptor for abscisic acid (ABA) required for ABA-mediated responses such as stomatal closure and germination inhibition. Inhibits the activity of group-A protein phosphatases type 2C (PP2Cs) when activated by ABA. Can be activated by both (-)-ABA and (+)-ABA. Promotes drought tolerance. | 0.794 |