STRINGSTRING
rpl2-A rpl2-A nad1 nad1 nad5 nad5 nad4 nad4 rpl2 rpl2 rbcL rbcL ndhB1 ndhB1 TUFA TUFA ND5 ND5 RNS1 RNS1 RPL8A RPL8A psaA psaA psaB psaB petB petB petD petD matK matK psaC psaC ND1 ND1 RPL2 RPL2 ND4 ND4 UGGT UGGT U1A U1A RNU1 RNU1 T1J1.5 T1J1.5 NMAT1 NMAT1 NMAT4 NMAT4 MSJ1.11 MSJ1.11 CRS1 CRS1 RH53 RH53 RNC1 RNC1 OTP51 OTP51
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rpl2-A50S ribosomal protein L2, chloroplastic; Belongs to the universal ribosomal protein uL2 family. (274 aa)
nad1NADH-ubiquinone oxidoreductase chain 1; Belongs to the complex I subunit 1 family. (325 aa)
nad5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (669 aa)
nad4NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (495 aa)
rpl2Ribosomal protein L2. (349 aa)
rbcLRibulose bisphosphate carboxylase large chain; RuBisCO catalyzes two reactions: the carboxylation of D- ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate in the photorespiration process. Both reactions occur simultaneously and in competition at the same active site. Belongs to the RuBisCO large chain family. Type I subfamily. (479 aa)
ndhB1NAD(P)H-quinone oxidoreductase subunit 2 A, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Belongs to the complex I subunit 2 family. (512 aa)
TUFAElongation factor Tu, chloroplastic; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (476 aa)
ND5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (669 aa)
RNS1Ribonuclease 1; May remobilize phosphate, particularly when cells senesce or when phosphate becomes limiting. (230 aa)
RPL8A60S ribosomal protein L8-1. (258 aa)
psaAPhotosystem I P700 chlorophyll a apoprotein A1; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin. (750 aa)
psaBPhotosystem I P700 chlorophyll a apoprotein A2; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin. (734 aa)
petBCytochrome b6; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (215 aa)
petDCytochrome b6-f complex subunit 4; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (160 aa)
matKMaturase K; Usually encoded in the trnK tRNA gene intron. Probably assists in splicing its own and other chloroplast group II introns. Belongs to the intron maturase 2 family. MatK subfamily. (504 aa)
psaCPhotosystem I iron-sulfur center; Apoprotein for the two 4Fe-4S centers FA and FB of photosystem I (PSI); essential for photochemical activity. FB is the terminal electron acceptor of PSI, donating electrons to ferredoxin. The C-terminus interacts with PsaA/B/D and helps assemble the protein into the PSI complex. Required for binding of PsaD and PsaE to PSI. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, [...] (81 aa)
ND1NADH-ubiquinone oxidoreductase chain 1; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (325 aa)
RPL260S ribosomal protein L2, mitochondrial; Belongs to the universal ribosomal protein uL2 family. (349 aa)
ND4NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (495 aa)
UGGTUDP-glucose:glycoprotein glucosyltransferase; Recognizes glycoproteins with minor folding defects. Reglucosylates single N-glycans near the misfolded part of the protein, thus providing quality control for protein folding in the endoplasmic reticulum. Reglucosylated proteins are recognized by calreticulin for recycling to the endoplasmic reticulum and refolding or degradation. Required for elongation factor Tu receptor (EFR), but not flagellin- sensing 2 (FLS2) signaling. (1613 aa)
U1AU1 small nuclear ribonucleoprotein A; Involved in nuclear pre-mRNA splicing (By similarity). Seems to not be involved in polyadenylation. (250 aa)
RNU1U1 small nuclear ribonucleoprotein 70 kDa; Mediates the splicing of pre-mRNA by binding to the loop I region of U1-snRNA. (427 aa)
T1J1.5Transducin family protein / WD-40 repeat family protein. (910 aa)
NMAT1Nuclear intron maturase 1, mitochondrial; Nuclear-encoded maturase required for splicing of group-II introns in mitochondria. Necessary for mitochondrial biogenesis during early developmental stages. Involved in the splicing of mitochondrial NAD4 transcripts. Required for trans-splicing of NAD1 intron 1 and also functions in cis-splicing of NAD2 intron 1 and NAD4 intron 2. Required for the regulation of fundamental metabolic pathways such as amino acid metabolism, triacylglycerol degradation and polysaccharide synthesis (cellulose and starch) during the early stage of plant growth. Imp [...] (711 aa)
NMAT4Nuclear intron maturase 4, mitochondrial; Nuclear-encoded maturase required for splicing of group-II introns in mitochondria. Involved in NAD1 pre-mRNA processing and maturation of introns 1, 3 and 4. Necessary for mitochondrial biogenesis during early developmental stages. Essential for respiratory holocomplex I biogenesis in mitochondria. (798 aa)
MSJ1.11Nuclear protein-like. (1269 aa)
CRS1Chloroplastic group IIA intron splicing facilitator CRS1, chloroplastic; Required for the splicing of group IIA introns in chloroplasts, by regulating the intron folding. Forms splicing particles with RNA. May also be involved in chloroplast protein translation. (720 aa)
RH53DEAD-box ATP-dependent RNA helicase 53, mitochondrial. (616 aa)
RNC1Ribonuclease III domain-containing protein RNC1, chloroplastic; Binds specific group II introns in chloroplasts and facilitates their splicing. Acts on both subgroup IIA and subgroup IIB introns. The substrates of the subgroup II also require the CRM domain proteins CAF1 or CAF2. Binds both single-stranded and double-stranded RNA non-specifically, but lacks endonuclease activity. Required for plastid ribosome biogenesis. (537 aa)
OTP51Pentatricopeptide repeat-containing protein At2g15820, chloroplastic; Promotes the splicing of group II introns in chloroplasts. Required for the splicing of intron 2 of plastid ycf3 transcripts, a factor required for the assembly of photosystem I (PSI). Involved in the splicing of several other group-IIa introns. May be involved in the splicing of precursor forms of trnL, trnG, trnI, and trnA. Required for the assembly of PSI and PSII. (849 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (18%) [HD]