node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
DCD | LCD | F4HYF3 | Q9M1R1 | Bifunctional D-cysteine desulfhydrase/1-aminocyclopropane-1-carboxylate deaminase, mitochondrial; Catalyzes the production of hydrogen sulfide (H2S) from cysteine. Is mainly responsible for the degradation of cysteine to generate H2S, a regulator of stomatal movement and closure. Has high affinity for D-cysteine. | L-cysteine desulfhydrase; Catalyzes the production of hydrogen sulfide (H2S) from cysteine. Is mainly responsible for the degradation of cysteine to generate H2S, a regulator of stomatal movement and closure. Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. | 0.992 |
DCD | PLDALPHA1 | F4HYF3 | Q38882 | Bifunctional D-cysteine desulfhydrase/1-aminocyclopropane-1-carboxylate deaminase, mitochondrial; Catalyzes the production of hydrogen sulfide (H2S) from cysteine. Is mainly responsible for the degradation of cysteine to generate H2S, a regulator of stomatal movement and closure. Has high affinity for D-cysteine. | Phospholipase D alpha 1; Hydrolyzes glycerol-phospholipids at the terminal phosphodiesteric bond to generate phosphatidic acids (PA). Plays an important role in various cellular processes, including phytohormone action and response to stress, characterized by acidification of the cell. Involved in wound induction of jasmonic acid. May be involved in membrane lipid remodeling. Probably involved in freezing tolerance by modulating the cold-responsive genes and accumulation of osmolytes. Can use phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) as subst [...] | 0.445 |
GPA1 | PLDALPHA1 | P18064 | Q38882 | Guanine nucleotide-binding protein alpha-1 subunit; Exhibits a fast rate of basal nucleotide exchange. Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. Together with GCR1, may regulate the cell cycle via a signaling cascade that uses phosphatidylinositol-specific phospholipase C (PI-PLC) as an effector and inositol 1,4,5-trisphosphate (IP(3)) as a second messenger. Promotes abscisic acid (ABA) responses in guard cells. But, together with GCR1 and GB1, acts as a negative regulator of ABA during seed ge [...] | Phospholipase D alpha 1; Hydrolyzes glycerol-phospholipids at the terminal phosphodiesteric bond to generate phosphatidic acids (PA). Plays an important role in various cellular processes, including phytohormone action and response to stress, characterized by acidification of the cell. Involved in wound induction of jasmonic acid. May be involved in membrane lipid remodeling. Probably involved in freezing tolerance by modulating the cold-responsive genes and accumulation of osmolytes. Can use phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) as subst [...] | 0.971 |
LCD | DCD | Q9M1R1 | F4HYF3 | L-cysteine desulfhydrase; Catalyzes the production of hydrogen sulfide (H2S) from cysteine. Is mainly responsible for the degradation of cysteine to generate H2S, a regulator of stomatal movement and closure. Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. | Bifunctional D-cysteine desulfhydrase/1-aminocyclopropane-1-carboxylate deaminase, mitochondrial; Catalyzes the production of hydrogen sulfide (H2S) from cysteine. Is mainly responsible for the degradation of cysteine to generate H2S, a regulator of stomatal movement and closure. Has high affinity for D-cysteine. | 0.992 |
LCD | PLDALPHA1 | Q9M1R1 | Q38882 | L-cysteine desulfhydrase; Catalyzes the production of hydrogen sulfide (H2S) from cysteine. Is mainly responsible for the degradation of cysteine to generate H2S, a regulator of stomatal movement and closure. Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. | Phospholipase D alpha 1; Hydrolyzes glycerol-phospholipids at the terminal phosphodiesteric bond to generate phosphatidic acids (PA). Plays an important role in various cellular processes, including phytohormone action and response to stress, characterized by acidification of the cell. Involved in wound induction of jasmonic acid. May be involved in membrane lipid remodeling. Probably involved in freezing tolerance by modulating the cold-responsive genes and accumulation of osmolytes. Can use phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) as subst [...] | 0.483 |
LCD | PLDDELTA | Q9M1R1 | Q9C5Y0 | L-cysteine desulfhydrase; Catalyzes the production of hydrogen sulfide (H2S) from cysteine. Is mainly responsible for the degradation of cysteine to generate H2S, a regulator of stomatal movement and closure. Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. | Phospholipase D delta; Hydrolyzes glycerol-phospholipids at the terminal phosphodiesteric bond to generate phosphatidic acids (PA). May be involved in PA accumulation in the dehydration stress response and in the transduction of hormonal and environmental signals to the microtubules cytoskeleton. Prefers phosphatidylethanolamine to phosphatidylcholine as substrate. Involved in H(2)O(2) and abscisic acid (ABA)-induced stomatal closure. Involved in nitric oxide (NO) signaling during stomatal closure. Plays a positive role in ABA-promoted senescence. Involved in basal defense and nonhost [...] | 0.543 |
LOX1 | LOX2 | Q06327 | P38418 | Linoleate 9S-lipoxygenase 1; 9S-lipoxygenase that can use linoleic acid or linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Function as regulators of root development by controlling the emergence of lateral roots. | Lipoxygenase 2, chloroplastic; 13S-lipoxygenase that can use linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Required for the wound-induced synthesis of jasmonic acid (JA) in leaves. | 0.916 |
LOX1 | LOX3 | Q06327 | Q9LNR3 | Linoleate 9S-lipoxygenase 1; 9S-lipoxygenase that can use linoleic acid or linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Function as regulators of root development by controlling the emergence of lateral roots. | Lipoxygenase 3, chloroplastic; 13S-lipoxygenase that can use linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure (By similarity). | 0.911 |
LOX1 | LOX4 | Q06327 | Q9FNX8 | Linoleate 9S-lipoxygenase 1; 9S-lipoxygenase that can use linoleic acid or linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Function as regulators of root development by controlling the emergence of lateral roots. | Lipoxygenase 4, chloroplastic; Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure (By similarity). 13S-lipoxygenase that can use linolenic acid as substrates. | 0.911 |
LOX1 | LOX5 | Q06327 | Q9LUW0 | Linoleate 9S-lipoxygenase 1; 9S-lipoxygenase that can use linoleic acid or linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Function as regulators of root development by controlling the emergence of lateral roots. | Linoleate 9S-lipoxygenase 5; 9S-lipoxygenase that can use linoleic acid or linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Function as regulators of root development by controlling the emergence of lateral roots. | 0.904 |
LOX1 | LOX6 | Q06327 | Q9CAG3 | Linoleate 9S-lipoxygenase 1; 9S-lipoxygenase that can use linoleic acid or linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Function as regulators of root development by controlling the emergence of lateral roots. | Lipoxygenase 6, chloroplastic; Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure (By similarity). 13S-lipoxygenase that can use linolenic acid as substrates. | 0.914 |
LOX1 | PLDALPHA1 | Q06327 | Q38882 | Linoleate 9S-lipoxygenase 1; 9S-lipoxygenase that can use linoleic acid or linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Function as regulators of root development by controlling the emergence of lateral roots. | Phospholipase D alpha 1; Hydrolyzes glycerol-phospholipids at the terminal phosphodiesteric bond to generate phosphatidic acids (PA). Plays an important role in various cellular processes, including phytohormone action and response to stress, characterized by acidification of the cell. Involved in wound induction of jasmonic acid. May be involved in membrane lipid remodeling. Probably involved in freezing tolerance by modulating the cold-responsive genes and accumulation of osmolytes. Can use phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) as subst [...] | 0.500 |
LOX1 | PLDDELTA | Q06327 | Q9C5Y0 | Linoleate 9S-lipoxygenase 1; 9S-lipoxygenase that can use linoleic acid or linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Function as regulators of root development by controlling the emergence of lateral roots. | Phospholipase D delta; Hydrolyzes glycerol-phospholipids at the terminal phosphodiesteric bond to generate phosphatidic acids (PA). May be involved in PA accumulation in the dehydration stress response and in the transduction of hormonal and environmental signals to the microtubules cytoskeleton. Prefers phosphatidylethanolamine to phosphatidylcholine as substrate. Involved in H(2)O(2) and abscisic acid (ABA)-induced stomatal closure. Involved in nitric oxide (NO) signaling during stomatal closure. Plays a positive role in ABA-promoted senescence. Involved in basal defense and nonhost [...] | 0.529 |
LOX2 | LOX1 | P38418 | Q06327 | Lipoxygenase 2, chloroplastic; 13S-lipoxygenase that can use linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Required for the wound-induced synthesis of jasmonic acid (JA) in leaves. | Linoleate 9S-lipoxygenase 1; 9S-lipoxygenase that can use linoleic acid or linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Function as regulators of root development by controlling the emergence of lateral roots. | 0.916 |
LOX2 | LOX5 | P38418 | Q9LUW0 | Lipoxygenase 2, chloroplastic; 13S-lipoxygenase that can use linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Required for the wound-induced synthesis of jasmonic acid (JA) in leaves. | Linoleate 9S-lipoxygenase 5; 9S-lipoxygenase that can use linoleic acid or linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Function as regulators of root development by controlling the emergence of lateral roots. | 0.918 |
LOX2 | PLDALPHA1 | P38418 | Q38882 | Lipoxygenase 2, chloroplastic; 13S-lipoxygenase that can use linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Required for the wound-induced synthesis of jasmonic acid (JA) in leaves. | Phospholipase D alpha 1; Hydrolyzes glycerol-phospholipids at the terminal phosphodiesteric bond to generate phosphatidic acids (PA). Plays an important role in various cellular processes, including phytohormone action and response to stress, characterized by acidification of the cell. Involved in wound induction of jasmonic acid. May be involved in membrane lipid remodeling. Probably involved in freezing tolerance by modulating the cold-responsive genes and accumulation of osmolytes. Can use phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) as subst [...] | 0.484 |
LOX2 | PLDDELTA | P38418 | Q9C5Y0 | Lipoxygenase 2, chloroplastic; 13S-lipoxygenase that can use linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Required for the wound-induced synthesis of jasmonic acid (JA) in leaves. | Phospholipase D delta; Hydrolyzes glycerol-phospholipids at the terminal phosphodiesteric bond to generate phosphatidic acids (PA). May be involved in PA accumulation in the dehydration stress response and in the transduction of hormonal and environmental signals to the microtubules cytoskeleton. Prefers phosphatidylethanolamine to phosphatidylcholine as substrate. Involved in H(2)O(2) and abscisic acid (ABA)-induced stomatal closure. Involved in nitric oxide (NO) signaling during stomatal closure. Plays a positive role in ABA-promoted senescence. Involved in basal defense and nonhost [...] | 0.519 |
LOX3 | LOX1 | Q9LNR3 | Q06327 | Lipoxygenase 3, chloroplastic; 13S-lipoxygenase that can use linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure (By similarity). | Linoleate 9S-lipoxygenase 1; 9S-lipoxygenase that can use linoleic acid or linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Function as regulators of root development by controlling the emergence of lateral roots. | 0.911 |
LOX3 | LOX4 | Q9LNR3 | Q9FNX8 | Lipoxygenase 3, chloroplastic; 13S-lipoxygenase that can use linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure (By similarity). | Lipoxygenase 4, chloroplastic; Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure (By similarity). 13S-lipoxygenase that can use linolenic acid as substrates. | 0.503 |
LOX3 | LOX5 | Q9LNR3 | Q9LUW0 | Lipoxygenase 3, chloroplastic; 13S-lipoxygenase that can use linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure (By similarity). | Linoleate 9S-lipoxygenase 5; 9S-lipoxygenase that can use linoleic acid or linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Function as regulators of root development by controlling the emergence of lateral roots. | 0.912 |